GPT: \(\dfrac{\sqrt{21+x}+\sqrt{21-x}}{\sqrt{21+x}-\sqrt{21-x}}=\dfrac{21}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: -21\(\le x\le\)21
Đặt \(\left\{{}\begin{matrix}\sqrt{21+x}=a\\\sqrt{21-x}=b\end{matrix}\right.\left(a,b\ge0\right)\) (a\(\ne\)b)
Ta có \(\left\{{}\begin{matrix}21+x=a^2\\21-x=b^2\end{matrix}\right.\) =>\(\left\{{}\begin{matrix}a^2+b^2=42\\a^2-b^2=2x\end{matrix}\right.\)
Pt đã cho trở thành \(\dfrac{a+b}{a-b}=\dfrac{a^2+b^2}{a^2-b^2}\)
<=> \(\left(a+b\right)^2\)(a-b)=(\(a^2+b^2\))(a-b)
<=> (a-b)2ab=0
\(\text{}\text{}\left[{}\begin{matrix}a=b\left(loai\right)\\a=0\left(tm\right)\\b=0\left(tm\right)\end{matrix}\right.\)
Thay vào ta tìm dc S=\(\left\{21,-21\right\}\)
a: Ta có: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{3}{\sqrt{x}+2}+\dfrac{12}{x-4}\)
\(=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6+12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+\sqrt{x}+22}{x-4}\)
d: Ta có: \(D=\dfrac{1}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}+\dfrac{2\sqrt{x}-12}{x-9}\)
\(=\dfrac{\sqrt{x}-3+x+3\sqrt{x}+2\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+6\sqrt{x}-15}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
Chắc dưới mẫu bạn ghi nhầm căn đầu tiên
ĐKXĐ: \(-21\le x\le21;x\ne0\)
\(\Leftrightarrow\frac{\left(\sqrt{21+x}+\sqrt{21-x}\right)^2}{21+x-21+x}=\frac{21}{x}\)
\(\Leftrightarrow\frac{42+2\sqrt{21^2-x^2}}{2x}=\frac{21}{x}\)
\(\Leftrightarrow\sqrt{21^2-x^2}=0\)
\(\Rightarrow x=\pm21\)
1: ĐKXĐ: x>1/2
=>\(\dfrac{x}{\sqrt{2x-1}}+\dfrac{x}{\sqrt[4]{4x-3}}=2\)
x^2-2x+1>=0
=>x^2>=2x-1
=>\(\dfrac{x}{\sqrt{2x-1}}>=1\)
Dấu = xảy ra khi x=1
(x^2-2x+1)(x^2+2x+3)>=0
=>x^4-4x+3>=0
=>x^4>=4x-3
=>\(\dfrac{x}{\sqrt[4]{4x-3}}>=1\)
=>VT>=2
Dấu = xảy ra khi x=1
2: 4x-1=x+x+2x-1
5x-2=x+2x-1+2x-1
\(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}\right)\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)>=9\)
=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{9}{\sqrt{x}+\sqrt{x}+\sqrt{2x-1}}\)
\(\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)^2< =3\left(4x-1\right)\)
=>\(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}< =\sqrt{3\left(4x-1\right)}\)
=>\(\dfrac{2}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{4x-1}}\)
Tương tự, ta cũng có: \(\dfrac{1}{\sqrt{x}}+\dfrac{2}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{5x-2}}\)
=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)
Dấu = xảy ra khi x=1