cho tam giác ABC vuông tại A,M là trung điểm BC.Lấy F là điểm đối xứng của M qua AC.Gọi I là giao điểm của MF và AC
a)chứng minh tứ giác AMCF là hình bình hành
b)chứng minh tứ giác AMCF là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: F đối xứng với M qua AC
nên AC là đường trung trực của FM
\(\Leftrightarrow AC\perp FM\) tại trung điểm của FM
mà AC cắt FM tại I
nên AC\(\perp\)FM tại I và I là trung điểm của MF
Xét ΔABC có
M là trung điểm của BC
MI//AB
Do đó: I là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
I là trung điểm của AC
Do đó: MI là đường trung trực của ΔABC
Suy ra: MI//AB và \(MI=\dfrac{AB}{2}\)
mà E\(\in\)AB và \(AE=\dfrac{AB}{2}\)
nên MI//AE và MI=AE
Xét tứ giác AEMI có
MI//AE
MI=AE
Do đó: AEMI là hình bình hành
b: Xét tứ giác AMCF có
I là trung điểm của đường chéo AC
I là trung điểm của đường chéo MF
Do đó: AMCF là hình bình hành
c: Ta có: \(IM=\dfrac{MF}{2}\)
mà \(IM=\dfrac{AB}{2}\)
nên MF=AB
Xét tứ giác AFMB có
MF//AB
MF=AB
Do đó: AFMB là hình bình hành
a: Xét tứ giác ANME có
\(\widehat{ANM}=\widehat{AEM}=\widehat{EAN}=90^0\)
Do đó: ANME là hình chữ nhật
Suy ra: AM=NE
b: Xét tứ giác AMCF có
AC và MF cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau
nên AMCF là hình thoi
a) Xét tứ giác ADME có :
Góc A = 900 ( tam giác ABC vuông tại A )
Góc D = 900 ( MD vuông góc AB )
Góc E = 900 ( ME vuông góc AC )
Do đó tứ giác ADME là hình chữ nhật
b) Chứng minh đúng D, E là trung điểm của AB ; AC
Chứng minh đúng DE là đường trung bình của tam giác
ABC nên DE song song và \(DE=\frac{BC}{2}\)
Cho nên DE song song với BM và DE = BM
=> Tứ giác BDME là hình bình hành
c) Xét tứ giác AMCF có :
E là trung điểm MF ( vì M đối xứng với F qua E )
Mà E là trung điểm của AC ( cmt )
Nên tứ giác AMCF là hình bình hành
Ta có AC vuông góc MF ( vì ME vuông góc AC )
Do đó tứ giác AMCF là hình thoi
d) Chứng minh đúng tứ giác ABNE là hình chữ nhật
Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE
trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE
nên \(KO=\frac{BE}{2}\)
mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)
trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN
nên tam giác AKN vuông tại A
Vậy AK vuông góc KN
b: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
a: Xét ΔCAB có CE/CA=CM/CB
nên ME//ABvà ME=AB/2
=>ME//AD và ME=AD
=>ADME là hình bình hành
mà góc DAE=90 độ
nên ADME là hình chữ nhật
b: ADME là hình chữ nhật
=>AM=DE
c: BC=15cm
=>AM=15/2=7,5cm
=>DE=7,5cm
d: Xét tứ giác AMCF có
E là trung điểm chung của AC và MF
MA=MC
Do đó: AMCF là hình thoi
a: Ta có: M và F đối xứng nhau qua AC
nên AC là đường trung trực của MF
Suy ra: AC\(\perp\)MF tại trung điểm của MF
hay I là trung điểm của MF
Xét ΔABC có
M là trung điểm của BC
MI//AB
Do đó: I là trung điểm của AC
Xét tứ giác AMCF có
I là trung điểm của đường chéo AC
I là trung điểm của đường chéo MF
Do đó: AMCF là hình bình hành
mà AC\(\perp\)MF
nên AMCF là hình thoi