K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

NV
28 tháng 3 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\) 

\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)

\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết

28 tháng 3 2021

Mk sửa lại đề rồi. Bạn giúp mk giải vs

NV
8 tháng 4 2021

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)

\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)

Giải hệ phương trình 1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\) 2....
Đọc tiếp

Giải hệ phương trình

1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}x^2-2xy-6=6y+2x\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-x=y+3\end{matrix}\right.\)

4.\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)

6.\(\left\{{}\begin{matrix}x^3\left(x-y\right)+x^2y^2=1\\x^2\left(xy+3\right)-3xy=3\end{matrix}\right.\)

7.\(\left\{{}\begin{matrix}x^2+3y-6x=0\\9x^2-6xy^2+y^4-3y+9=0\end{matrix}\right.\)

8.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x+y-xy=2y^2-x^2\end{matrix}\right.\)

9.\(\left\{{}\begin{matrix}8x^3-y=y^3-2x\\x^2+y^2=x+2y\end{matrix}\right.\)

10.\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

11.\(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+2\right)=4\left(y+2\right)\\x^2+y^2+\left(y+2\right)\left(x+y+2\right)=4\left(y+2\right)\end{matrix}\right.\)

12. \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x^2+3xy+2y^2+x+y=0\end{matrix}\right.\)

13. \(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)

14. \(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{matrix}\right.\)

15.\(\left\{{}\begin{matrix}x^2+y^2+4x+2y=3\\x^2+7y^2-4xy+6y=13\end{matrix}\right.\)

16. \(\left\{{}\begin{matrix}x^2-5xy+x-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)

17.\(\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{matrix}\right.\)

18.\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

Đây là các bài hệ trong đề thi chuyên toán mong mọi người giúp vì mình bận quá nên không thể làm hết được ạ

10
28 tháng 11 2019

1,ĐK: \(x,y\ne-2\)

HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

=> \(2xy\left(x+2\right)\left(y+2\right)=0\)

<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))

<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)

Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2

Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)

2, ĐK: \(y\ne-1\)

HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)

<=> 6(x+3)=4-x

<=> \(14=-7x\)

<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)

<=>y=1\(\)( tm)

Vậy hpt có một nghiệm duy nhất (-2,1)

3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)

PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

<=> (x-y)(x+y+1)=0

<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)

Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))

4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))

<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)

\(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).

28 tháng 11 2019

10.

\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

NV
2 tháng 10 2019

a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)

\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:

\(t^2-t+2=0\) (vô nghiệm)

TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)

b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)

NV
2 tháng 10 2019

c/ Trừ vế với vế:

\(x^2-y^2-2x+2y=y-x\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)

Thay vào pt đầu:

\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)

d/ Sao có t từ đâu vào đây thế này? :(

e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)

\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)

18 tháng 8 2021

các bn ơi giúp mình với

 

NV
25 tháng 5 2020

c/ \(y=0\) không phải nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1+y\left(x+y\right)=4y\\y\left(x+y\right)^2-2\left(x^2+1\right)=7y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\left(\frac{x^2+1}{y}\right)=7\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\\frac{x^2+1}{y}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\a^2-2b=7\end{matrix}\right.\) \(\Rightarrow a^2-2\left(4-a\right)=7\)

\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\Rightarrow b=1\\a=-5\Rightarrow b=9\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=3\\\frac{x^2+1}{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\x^2+1-y=0\end{matrix}\right.\)

\(\Rightarrow x^2+1-\left(3-x\right)=0\Rightarrow...\)

TH2: làm tương tự

NV
25 tháng 5 2020

a/ \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x-y\right)\left(x+y\right)^2=25\end{matrix}\right.\)

Do \(x=y;x=-y\) đều ko phải nghiệm

\(\Rightarrow\frac{x^2+y^2}{\left(x+y\right)^2}=\frac{13}{25}\Leftrightarrow25\left(x^2+y^2\right)=13\left(x+y\right)^2\)

\(\Leftrightarrow12x^2-26xy+12y^2=0\)

\(\Leftrightarrow\left(2x-3y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=\frac{2}{3}x\\y=\frac{3}{2}x\end{matrix}\right.\)

Thay vào 1 trong 2 pt ban đầu là xong

b/ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\y\ge0\end{matrix}\right.\) \(\Rightarrow x+y>0\)

\(xy+x+y+y^2=x^2-y^2\)

\(\Leftrightarrow x\left(y+1\right)+y\left(y+1\right)=\left(x-y\right)\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)\left(y+1\right)=\left(x+y\right)\left(x-y\right)\)

\(\Leftrightarrow y+1=x-y\Rightarrow x=2y+1\)

Thay vào pt dưới:

\(\left(2y+1\right)\sqrt{2y}+y\sqrt{2y}=2\left(y+1\right)\)

\(\Leftrightarrow\sqrt{2y}\left(3y+1\right)=2\left(y+1\right)\)

\(\Leftrightarrow y\left(9y^2+6y+1\right)=2\left(y^2+2y+1\right)\)

\(\Leftrightarrow9y^3+2y^2-3y-2=0\)

Nghiệm quá xấu, bạn coi lại đề