Chứng minh rằng với mọi số thực x ta luôn có :
\(\left(2x+1\right)\sqrt{x^2-x+1}>\left(2x-1\right)\sqrt{x^2+x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)
- Với \(-1< m< 1\Rightarrow1-m^2< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
Vậy pt đã cho có nghiệm với mọi m
b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được
c.
Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)
Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R
\(f\left(2\right)=4-5=-1< 0\)
\(f\left(3\right)=6-5=1>0\)
\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m
Hay pt đã cho luôn luôn có nghiệm
Xét \(x< -\frac{1}{2}\)
\(\left(2x+1\right)\sqrt{x^2-x+1}>\left(2x-1\right)\sqrt{x^2+x+1}\)
\(\Leftrightarrow\left(-2x-1\right)\sqrt{x^2-x+1}< \left(-2x+1\right)\sqrt{x^2+x+1}\)
\(\Leftrightarrow\left(4x^2+4x+1\right)\left(x^2-x+1\right)< \left(4x^2-4x+1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow6x< 0\)đúng
Xét \(-\frac{1}{2}\le x< \frac{1}{2}\)
Thì VT dương VP âm nên đúng
Xét \(x\ge\frac{1}{2}\)làm tương tự như TH 1
\(a,=\dfrac{x+8\sqrt{x}+8-\left(\sqrt{x+2}\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{2\sqrt{x}+x+5}\)
\(=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)
Vậy \(P=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)
\(\left(x+1+\sqrt{\left(x+1\right)^2+1}\right)\left(y-1+\sqrt{\left(y-1\right)^2+1}\right)=0\) (1)
Nhân 2 vế với \(\sqrt{\left(x+1\right)^2+1}-\left(x+1\right)\) và rút gọn
\(\Rightarrow y-1+\sqrt{\left(y-1\right)^2+1}=\sqrt{\left(x+1\right)^2+1}-\left(x+1\right)\) (2)
Nhân 2 vế của (1) với \(\sqrt{\left(y-1\right)^2+1}-\left(y-1\right)\) và rút gọn
\(\Rightarrow x+1+\sqrt{\left(x+1\right)^2+1}=\sqrt{\left(y-1\right)^2+1}-\left(y-1\right)\) (3)
Cộng vế với vế (2) và (3) và rút gọn:
\(\Rightarrow y+x=-x-y\)
\(\Leftrightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)
Ta có:
\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{y}{z}+\dfrac{x}{z}+\dfrac{z}{x}\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Ta có:
\(\dfrac{x}{y}+\dfrac{x}{y}+1\ge3\sqrt[3]{\dfrac{x^2}{y^2}}\)
Tương tự ...
Cộng lại ta có:
\(2\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\right)+6\ge3\left(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\right)\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\)
Do đó ta chỉ cần chứng minh:
\(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
\(\Leftrightarrow\left(\sqrt[3]{\dfrac{x}{y}}-\sqrt[3]{\dfrac{x}{z}}\right)^2+\left(\sqrt[3]{\dfrac{y}{x}}-\sqrt[3]{\dfrac{y}{z}}\right)^2+\left(\sqrt[3]{\dfrac{z}{x}}-\sqrt[3]{\dfrac{z}{y}}\right)^2\ge0\) (luôn đúng)
Lời giải:
\((2x+1)\sqrt{x^2-x+1}>(2x-1)\sqrt{x^2+x+1}\)
\(\Leftrightarrow (2x+1)\sqrt{4x^2-4x+4}> (2x-1)\sqrt{4x^2+4x+4}\)
\(\Leftrightarrow (2x+1)\sqrt{(2x-1)^2+3}>(2x-1)\sqrt{(2x+1)^2+3}\) (1)
Xét các TH sau:
TH1: \(\left\{\begin{matrix} 2x-1>0\\ 2x+1>0\end{matrix}\right.\Rightarrow x>0\)
Bình phương hai vế:
\((1)\Leftrightarrow (2x+1)^2[(2x-1)^2+3]\geq (2x-1)^2[(2x+1)^2+3]\)
\(\Leftrightarrow 3(2x+1)^2\geq 3(2x-1)^2\)
\(\Leftrightarrow (2x+1)^2\geq (2x-1)^2\)
\(\Leftrightarrow 8x\geq 0\) (đúng)
TH2: \(\left\{\begin{matrix} 2x-1<0\\ 2x+1<0\end{matrix}\right.\Rightarrow x<0\)
\((1)\Leftrightarrow -(2x+1)\sqrt{((x+1)^2+3}< -(2x-1)\sqrt{(2x+1)^2+3}\)
(nhân hai vế với 1 số âm thì phải đổi dấu)
Bây giờ 2 vế đều dương rồi. Bình phương hai vế:
\(\Leftrightarrow (2x+1)^2[(2x-1)^2+3]\geq (2x-1)^2[(2x+1)^2+3]\)
\(\Leftrightarrow 3(2x+1)^2< 3(2x-1)^2\)
\(\Leftrightarrow x< 0\) (đúng)
TH3: \(\left\{\begin{matrix} 2x+1>0\\ 2x-1<0\end{matrix}\right.\)
Khi đó, vế trái lớn hơn 0, vế phải nhỏ hơn 0 nên ta có đpcm.
TH4: \(\left\{\begin{matrix} 2x+1<0\\ 2x-1>0\end{matrix}\right.\) (TH này không thể xảy ra vì \(2x+1> 2x-1\)
TH5: \(x=-\frac{1}{2}\Rightarrow \text{VT}=0; \text{VP}< 0\Rightarrow \text{VT}> \text{VP}\)
TH6: \(x=\frac{1}{2}\Rightarrow \text{VT}>0; \text{VP}=0\Rightarrow \text{VT}>\text{VP}\)
Ta có đpcm.