Tìm GTNN hoac GTLN cua bieu thuc sau
4x2 + 4x + 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 5 - 2z2
Vì 2z2 ≥ 0 => B = 5 - 2z2 ≤ 5
Dấu "=" xảy ra khi 2z2 = 0 => z = 0
Vậy Bmax là 5 tại z = 0
C = |x - 3| + |5 - x| ≥ |x - 3 + 5 - x| = 2
Dấu "=" xảy ra khi (x - 3)(5 - x) ≥ 0 <=> 5 ≥ x ≥ 3
Vậy Cmin = 2 tại 5 ≥ x ≥ 3
A= (x^2 - 2.x.1/2 + 1/4) -1/4
=(x-1/2)^2 -1/4 >= -1/4
Dấu"=" xảy ra <=> x-1/2 = 0 <=>x=1/2
Vậy Min A= -1/4 <=> x=1/2
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
GTLN và GTNN của biểu thức này đều ko tồn tại
D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)
D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))
\(A=4x^2+4x+11=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\forall x\Rightarrow\left(2x+1\right)^2+10\ge10\)
''='' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy Min_A = 10 khi x = -1/2