K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

đề đúng chưa z

30 tháng 10 2017

\(P=\left(2x-3y\right)^2+\left(5x+3y\right)^2+2\left(2x-3y\right)\left(5x+3y\right)-49\)

\(P=\left(5x+3y\right)^2+2\left(5x+3y\right)\left(2x-3y\right)+\left(2x-3y\right)^2-49\)

\(P=\left(5x+3y+2x-3y\right)^2-49\)

\(P=\left(7x\right)^2-7^2\)

\(P=\left(7x-7\right)\left(7x+7\right)\)

Thay x=1; y=2016 vào biểu thức A ta được:

\(\left(7.1-7\right)\left(7.1+7\right)=0.14=0\)

Vậy giá trị của biểu thức \(P=\left(2x-3y\right)^2+\left(5x+3y\right)^2+2\left(2x-3y\right)\left(5x+3y\right)-49\) tại x=1; y=2016 là 0

30 tháng 10 2017

\(= ((2x-3y)+(5x+3y))^2-49 = (8x)^2-49 thế x= 1 vào hoặc phân tích tiếp = (8x-7)(8x+7)\)

12 tháng 6 2021

a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)

\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)

\(=2y^2+4y-x^2-7x+2\)

Thay `x = 2` và `y = -1` vào `A + B` ta được:

\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)

b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)

\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)

\(=3x^2+3x-4y^2+2y-4\)

Thay `x = -2` và `y = 1` vào `A - B` ta được:

\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)

a: \(=\left(4xy^2+2xy^2\right)+\left(3x^2y-3x^2y\right)=6xy^2\)

b: \(=xy\left(\dfrac{1}{5}+\dfrac{1}{3}\right)+xy^2\left(\dfrac{4}{3}-\dfrac{2}{5}\right)=\dfrac{8}{15}xy+\dfrac{14}{15}xy^2\)

d: \(=\dfrac{-4}{9}\cdot\dfrac{3}{2}\cdot xy^2\cdot xy^3=-\dfrac{2}{3}x^2y^5\)

27 tháng 2 2022

bạn làm chi tiết ra được không ?

 

31 tháng 3 2019

Bạn xét tích thì nó ra dương thì tất nhiên có 1 biểu thức lớn hơn 0 rồi

1 tháng 4 2019

Nói rõ hơn đi

12 tháng 4 2021

Đặt bthuc = A nhé

ĐKXĐ : \(2x\ne3y\)

\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)

\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)

\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)

Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3

20 tháng 6 2018

\(\left(2x^2+5x+3\right):\left(x+1\right)-\left(4x-5\right)\)

\(=\dfrac{2x^2+2x+3x+3}{x+1}-4x+5\)

\(=\dfrac{2x\left(x+1\right)+3\left(x+1\right)}{x+1}-4x+5\)

\(=\dfrac{\left(x+1\right)\left(2x+3\right)}{x+1}-4x+5\)

\(=2x+3-4x+5\)

\(=-2x+8\)

thay x=-2 vào biểu thức ta có:

\(=-2\left(-2\right)+8=4+8=12\)