Tính \(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3-....-\left(\frac{1}{2}\right)^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+2016\right)\)
\(A=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+\frac{1}{4}.\frac{\left(1+4\right).4}{2}+...+\frac{1}{16}.\frac{\left(1+16\right).16}{2}\)
\(A=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+\frac{1}{4}.\frac{5.4}{2}+...+\frac{1}{16}.\frac{17.16}{2}\)
\(A=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(A=\frac{1}{2}.\left(2+3+4+5+...+17\right)\)
\(A=\frac{1}{2}.\frac{\left(2+17\right).16}{2}=19.4=76\)
hik như vế sau là a làm theo 16 chứ k fai 2016 hay sao ấy
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
a) \(A=\left(1:\frac{1}{4}\right).4+25\left(1:\frac{16}{9}:\frac{125}{64}\right):\left(-\frac{27}{8}\right)\)
\(=4.4+25.\frac{36}{125}:\frac{-27}{8}\)
\(=16-\frac{32}{15}=\frac{240}{15}-\frac{32}{15}=\frac{208}{15}\)
Thì nhân với 1/2 thì được chứ sao
\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3-...-\left(\dfrac{1}{2}\right)^{10}\\ \\2A=1-\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-...-\left(\dfrac{1}{2}\right)^9\\ 2A-A=\left[1-\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-...-\left(\dfrac{1}{2}\right)^9\right]-\left[\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3-...-\left(\dfrac{1}{2}\right)^{10}\right]\\ A=1-\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^{10}\)