\(\dfrac{x-y+z}{z}=\dfrac{y+z-x}{x}=\dfrac{x-y+z}{y}\)
Tính A= \(\left(1+\dfrac{y}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{x}{z}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
=0
c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{1}{xyz}\)
a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)
b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)
d)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)
=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)
=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)
\(\dfrac{x+y-2017z}{z}=\dfrac{y+z-2017x}{x}=\dfrac{z+x-2017y}{y}\)
<=> \(\dfrac{x+y}{z}-2017=\dfrac{z+y}{x}-2017=\dfrac{z+x}{y}-2017\)
<=> \(\dfrac{x+y}{z}=\dfrac{z+y}{x}=\dfrac{z+x}{y}\)
đặt x+y+z = t
=> \(\dfrac{t-z}{z}=\dfrac{t-x}{x}=\dfrac{t-y}{y}< =>\dfrac{t}{z}-1=\dfrac{t}{x}-1=\dfrac{t}{y}-1\) \(< =>\dfrac{t}{z}=\dfrac{t}{y}=\dfrac{t}{x}\)
=> x=y=z
ta lại có
\(P=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{y}\right)\)
vì x=y=z => P = \(\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)
Tương tự:
\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)
\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)
\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)
Quy đồng tính bình thường.
\(A=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+2\left(\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{z-x}\right)\)\(=\dfrac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\dfrac{2yz+2xz+2xy-2x^2-2y^2-2z^2}{ }\)
=0
* Nếu x + y + z = 0
\(A=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{z}{y}\right)\left(1+\dfrac{x}{z}\right)\)
\(=\dfrac{x+y}{x}\cdot\dfrac{y+z}{y}\cdot\dfrac{z+x}{z}=\dfrac{\left(-z\right)}{x}\cdot\dfrac{\left(-x\right)}{y}\cdot\dfrac{\left(-y\right)}{z}=\dfrac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\dfrac{xyz}{xyz}=-1\)
* Nếu x + y + z khác 0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x-y-z}{x}=\dfrac{y-x-z}{y}=\dfrac{-x-y+z}{z}=\dfrac{x-y-z+y-x-z-x-y+z}{x+y+z}=\dfrac{-x-y-z}{x+y+z}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x-y-z=-x\\y-x-z=-y\\-x-y+z=-z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\Rightarrow x=y=z\)
\(\Rightarrow A=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{z}{y}\right)\left(1+\dfrac{x}{z}\right)\)
\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{x-y+z}{y}\)
\(\Rightarrow\dfrac{x+y-z}{z}+2=\dfrac{y+z-x}{x}+2=\dfrac{x-y+z}{y}+2\)
\(\Rightarrow\dfrac{x+y-z}{z}+\dfrac{2z}{z}=\dfrac{y+z-x}{x}+\dfrac{2x}{x}=\dfrac{x-y+z}{y}+\dfrac{2y}{y}\)
\(\Rightarrow\dfrac{x+y-z+2z}{z}=\dfrac{y+z-x+2x}{x}=\dfrac{x-y+z+2y}{y}\)
\(\Rightarrow\dfrac{x+y+z}{z}=\dfrac{y+z+x}{x}=\dfrac{x+z+y}{y}\)
Điều này xảy ra khi và chỉ khi: \(\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)
\(\circledast\)Với \(x+y+z=0\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
Thay vào \(A\) ta có: \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{x}{z}\right)=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{z+x}{z}\right)=\dfrac{-z.-x.-y}{xyz}=\dfrac{-xyz}{xyz}=-1\)
\(\circledast\) Với \(x=y=z\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=1\\\dfrac{y}{z}=1\\\dfrac{x}{z}=1\end{matrix}\right.\)
Thay vào \(A\) ta có:
\(A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)