Tìm tất cả các số nguyên dương n sao cho n!+5 là lũy thừa bậc 3 của 1 số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n!+5=x3 (n,x thuộc N)
Xét n từ 0 đến 9: Chỉ có số 5 thỏa mãn điều kiện.
Xét n lớn hơn 10: Khi đó n! sẽ có ít nhất 2 thừa số 5 và 5 thừa số 2 => Sẽ có đuôi là 00 => n!+5 có đuôi là 05=> n!+5 chia hết cho 5=> x3 chia hết cho 5=> x chỉ có đuôi là 5 => x3 có đuôi là 25 hoặc 75=> không có số nào thỏa mãn đk.
Vậy n=5.
Đặt A là số cần tìm. Ta có: A= 5m^5 = 3.n^3 = 2.p^2
Như vậy A có các ước nguyên tố 5,3,2. Mà A là số bé nhất thỏa mãn nên ta có A = 5^a.3^b.2^c
Xét nhân tử 5^a, vì A/3=n^3, A/2=p^2 nên n^3,p^2 chứa nhân tử 5^a=> a phải chia hết cho 2,3
Mặt khác A=5.m^5 nên a chia 5 dư 1 => a nhỏ nhất là 6
Tương tự ta có b chia hết cho 2,5, chia 3 dư 1 nên b nhỏ nhất là 10
c chia hết cho 5,3 chia 2 dư 1 nên c nhỏ nhất là 15
Vậy A nhỏ nhất là 5^6.3^10.2^15. Thử lại thỏa mãn.
Sử dụng đồng dư:
Trước hết ta thấy dó n5 và n có chung chữ số tận cùng nên \(n^5\equiv n\left(mod10\right)\forall n.\)
Gọi x là số cần tìm, a là số tự nhiên thỏa mãn: \(x=a^5.\) Theo lập luận bên trên, do x có tận cùng là 4 nên a cũng có tận cùng là 4.
Vậy thì \(1000000004\le a^5\le9999999994\Rightarrow63< a< 100\)
Do a có tận cùng là 4 nên a = 64, 74 , 84, 94. Vậy x = 1073741824; 2219006624; 4182119424; 7339040224.
Làm bằng pascal thì những bài như thế này thì test lớn chạy không nổi đâu bạn
#include <bits/stdc++.h>
using namespace std;
long long n,a,b;
int main()
{
cin>>n;
a=1;
while (pow(a,3)<=n)
{
a++;
}
if (pow(a,3)==n) cout<<"YES";
else cout<<"NO";
cout<<endl;
b=1;
while (pow(5,b)<=n) do b++;
if (pow(5,b)==n) cout<<"YES";
else cout<<"NO";
cout<<endl<<pow(n,n)%7;
return 0;
}
Phạm Hoàng Giang
Trần Quốc LộcKien NguyenTrần Thị HươngTRẦN MINH HOÀNG
Trần Đăng NhấtAn Nguyễn Báhattori heijiHung nguyenRibi Nkok Ngok
Gọi n!+5=x3 (n,x thuộc N)
Xét n từ 0 đến 9: Chỉ có số 5 thỏa mãn điều kiện.
Xét n lớn hơn 10: Khi đó n! sẽ có ít nhất 2 thừa số 5 và 5 thừa số 2 => Sẽ có đuôi là 00 => n!+5 có đuôi là 05=> n!+5 chia hết cho 5=> x3 chia hết cho 5=> x chỉ có đuôi là 5 => x3 có đuôi là 25 hoặc 75=> không có số nào thỏa mãn đk.
Vậy n=5.