Cho m và n là các STN khác 0 bất kỳ. CMR ( 2015m + 22017 + n2 ) không chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán thiếu dữ kiện
Vì 3 số t; n; m là dãy số cách đều có khoảng cách là a
Ví dụ t=5; n=7; m=9 thoả mãn điều kiện lớn hơn 3
m-n = n-t = 2 thoả mãn a=2 khác 0 nhưng a không chia hết cho 6
Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.