K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

ta có : \(M=\dfrac{1}{abc+ab+a+1}+\dfrac{1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\)

\(\Leftrightarrow M=\dfrac{abcd}{abcd+abc+ab+a}+\dfrac{1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{bcd}{bcd+bc+b+1}+\dfrac{1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{bcd+1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abcd+bcd}{abcd+bcd+bc+b}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{acd+cd}{acd+cd+c+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{acd+cd+1}{acd+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abcd+acd+cd}{abcd+acd+cd+c}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abd+ad+d}{abd+ad+d+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abd+ad+d+1}{abd+ad+d+1}=1\)

NV
27 tháng 11 2018

\(A=\dfrac{a}{abc+ab+a+1}+\dfrac{ba}{abcd+abc+ab+a}+\dfrac{\dfrac{c}{cd}}{\dfrac{acd}{cd}+\dfrac{cd}{cd}+\dfrac{c}{cd}+\dfrac{1}{cd}}+\dfrac{\dfrac{d}{d}}{\dfrac{dab}{d}+\dfrac{ad}{d}+\dfrac{d}{d}+\dfrac{1}{d}}\)

\(A=\dfrac{a}{abc+ab+a+1}+\dfrac{ab}{1+abc+ab+a}+\dfrac{\dfrac{1}{d}}{a+1+\dfrac{1}{d}+\dfrac{1}{cd}}+\dfrac{1}{ab+a+1+\dfrac{1}{d}}\)

\(abcd=1\Rightarrow\dfrac{1}{d}=abc;\dfrac{1}{cd}=ab\)

\(\Rightarrow A=\dfrac{a}{abc+ab+a+a}+\dfrac{ab}{abc+ab+a+1}+\dfrac{abc}{a+1+abc+ab}+\dfrac{1}{ab+a+1+abc}\)

\(\Rightarrow A=\dfrac{a+ab+abc+1}{abc+ab+a+1}=1\)

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

4 tháng 1 2022

Ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)

    \(=\dfrac{a+b+c+2d}{d}-1\)

⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Nếu a+b+c+d=0

⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)

Thay vào M, ta có:

\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)

Nếu a+b+c+d ≠0

⇒ \(a=b=c=d\)

Thay vào M, ta có

\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)

4 tháng 1 2022

Cắt cu 77

 

24 tháng 5 2017

Trong tam giác ABI, ta có :

\(\dfrac{MB'}{AB}=\dfrac{MI}{BI}\left(1\right)\)Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

17 tháng 12 2022

Đặt a/2019=b/2021=c/2023=k

=>a=2019k; b=2021k; c=2023k

(a-c)^2/4=(2023k-2019k)^2/4=(4k)^2/4=4k^2

(a-b)(b-c)=(2019k-2021k)(2021k-2023k)=4k^2

=>(a-c)^2/4=(a-b)(b-c)