K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

                                                      Bài giải

a, Ta có :

\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ

b, Ta có :

\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ

22 tháng 10 2019

♥๖Lan_Phương_cute#✖#girl_học_đường๖ۣۜ💋:))♥。◕‿◕。

chứng minh them \(\sqrt{2}\)\(\sqrt{5}\) là số vô tỉ nữa ! Vào đây tham khảo :

https://olm.vn/hoi-dap/detail/227642288657.html

20 tháng 1 2022

Nào , cop đi , cop đi 

HT

:)))))))))))

@@@@@@@@@@@

20 tháng 1 2022

 ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ

22 tháng 11 2017

Giả sử \(\sqrt{3}\)là một số hữu tỉ 

\(\Rightarrow\sqrt{3}=\frac{a}{b}\left(a;b\ne0\right);ƯCLN\left(a,b\right)=1 \)

\(\Rightarrow3=\frac{a^2}{b^2}\)

Ta có : \(a^2=3b^2\).Mà 3 là một số nguyên tố 

=> \(a^2⋮3\Leftrightarrow a⋮3\)

Vì \(a⋮3\).=> Đặt a= 3k

=>a2 = 9k2

Thay vào ta có : 

\(3=\frac{a^2}{b^2}\)

\(\Rightarrow b^2=9k^2:3\)

\(\Rightarrow b^2=3k^2\).Vì 3 là số nguyên tố 

\(\Rightarrow b^2⋮3\Leftrightarrow b⋮3\)

Vì \(a⋮3;b⋮3\)trái với UWCLN(a,b) =1

=> \(\sqrt{3}\)là một số vô tỉ

22 tháng 11 2017

thank bạn nha

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

4 tháng 9 2019

a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)

Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.

Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2

Kết quả trên chứng tỏ b chia hết cho 3.

Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √3 là số vô tỉ.

b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a

Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 5√2 là số vô tỉ.

* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:

3 + √2 = b

Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 3 + √2 là số vô tỉ.

5 tháng 10 2020

Ta có: \(\sqrt{5}\) là 1 số vô tỉ

=> \(2+\sqrt{5}\) là 1 số vô tỉ

=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ

=> đpcm

5 tháng 10 2020

Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)

\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)

\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))

Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ