Cho x, y > 0 và 2x > y. Chứng minh rằng : \(\left(\dfrac{1}{x}+2\right)^2.\left(\dfrac{2}{y}-\dfrac{1}{x}\right).\dfrac{2y-1}{y}\le\dfrac{81}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, phản ví dụ: \(x=y=\dfrac{1}{16};z=256\)
Nói chung, chỉ cần 2 biến đủ nhỏ là BĐT này đều sai
1.
Áp dụng BĐT Cauchy-Schwarz:
\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)
Tương tự:
\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)
\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)
Cộng vế:
\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
2.
Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)
Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)
Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)
Biến đổi giả thiết:
\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)
\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
\(\Rightarrow ab+bc+ca=a+b+c-1\)
BĐT cần chứng minh trở thành:
\(a^2+b^2+c^2\ge1\)
\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)
\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)
\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)
Lời giải:
1.
\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a^2(a-4)-(a-4)}{(a^3-8)-(7a^2-14a)}=\frac{(a-4)(a^2-1)}{(a-2)(a^2+2a+4)-7a(a-2)}\)
\(=\frac{(a-4)(a-1)(a+1)}{(a-2)(a^2-5a+4)}=\frac{(a-4)(a-1)(a+1)}{(a-2)(a-1)(a-4)}=\frac{a+1}{a-2}\)
2.
\(\frac{x^2y^2+1+(x^2-y)(1-y)}{x^2y^2+1+(x^2+y)(1+y)}=\frac{x^2y^2+1+x^2-x^2y-y+y^2}{x^2y^2+1+x^2+x^2y+y+y^2}\)
\(=\frac{(x^2y^2-x^2y+x^2)+(y^2-y+1)}{(x^2y^2+x^2y+x^2)+(y^2+y+1)}\)
\(=\frac{x^2(y^2-y+1)+(y^2-y+1)}{x^2(y^2+y+1)+(y^2+y+1)}=\frac{(x^2+1)(y^2-y+1)}{(x^2+1)(y^2+y+1)}=\frac{y^2-y+1}{y^2+y+1}\)
Sau vài phút cố gắng thì khẳng định đề bài của em bị sai
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)