Với n là số nguyên dương thì A=19.2\(^{3n}\)+17 là số nguyên tố hay hợp số?Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=19.2^{3n}+17=19.8^n+17\)
Với \(n=2k\):
\(A=19.16^k+17\equiv1.1^k+2\left(mod3\right)\equiv0\left(mod3\right)\)
mà \(A>3\)nên \(A\)là hợp số.
Với \(n=4k+1\):
\(A=19.8^{4k+1}+17\equiv9.8^{4k}+4\left(mod13\right)\equiv9.1^k+4\left(mod13\right)\equiv0\left(mod13\right)\)
mà \(A>13\)nên \(A\)là hợp số.
Với \(n=4k+3\):
\(A=19.8^{4k+3}+17=19.8^3.\left(8^4\right)^k+17\equiv3.1^k+2\left(mod5\right)\equiv0\left(mod5\right)\)
mà \(A>5\)nên \(A\)là hợp số.
Gọi d là ƯCLN(3n+2; 15n+7)
=> 3n+2:d;15n+7:d
=>5(3n+2)-(15n+7):d
=> 15n+10-15n-7:d
=> 3 \(:\) d =>d \(\in\) (1;3)( vì d là UCLN nên chỉ có thể là số dương)
Do trong 3n+2 và 15n+7 sẽ có 1 số chẵn và 1 số lẻ => ƯC(3n+2;15n+7)\(\ne\) 2
Vậy d=1
=> 3n+2 và 15n+7 là 2 số nguyên tố cùng nhau
Nếu như 3n+2 và 15n+7 là 2 số nguyên tố cùng nhau
=> ƯCLN(3n+2;15n+7)= 1 (cũng có thể là -1 nhưng vì n là số tự nhiên nên ƯCLN của chúng chỉ bằng 1)
Gọi ƯCLN(3n+2;15n+7)=d
=> 3n+2 chia hết cho d và 15n+7 cũng chia hết cho d
=> 5(3n+2) chia hết cho d và 15n+7 cũng chia hết cho d
=> 15n+10 chia hết cho d và 15n+7 cũng chia hết cho d
=> (15n+10)-(15n+7) chia hết cho d
=> 3 chia hết cho d
=> d=1;3
Vậy ƯCLN(3n+2;15n+7) có thể bằng 1 và cũng có thể bằng 3
=>Chúng chưa chắc là 2 số nguyên tố cùng nhau
Nếu sai thì các bạn thông cảm nha
Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
p và 2p+1 nguyên tố
Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
Xét p chia hết cho 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3