\(28sin^22x+sin7x-1=sinx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow1-cos4x+sin7x-1=sinx\)
\(\Leftrightarrow sin7x-sinx-cos4x=0\)
\(\Leftrightarrow2.cos4x.sin3x-cos4x=0\)
\(\Leftrightarrow cos4x\left(2.sin3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin3x=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\3x=\dfrac{\pi}{6}+k2\pi\\3x=\pi-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\)) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\) (\(k\in Z\))
Kết luận:...
c/
\(\Leftrightarrow2cos4x.sin3x=cos4x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\2sin3x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin3x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\3x=\frac{\pi}{6}+k2\pi\\3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
d/
\(\Leftrightarrow6sinx+3cosx+3=sinx-2cosx+3\)
\(\Leftrightarrow sinx+cosx=0\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)
a/
\(\Leftrightarrow\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx=sin4x\)
\(\Leftrightarrow sin\left(\frac{\pi}{3}-x\right)=sin4x\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-x+k2\pi\\4x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{15}+\frac{k2\pi}{5}\\x=\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)
b/
\(\Leftrightarrow2sinx.cosx+4sinx.cos^2x-2sinx=0\)
\(\Leftrightarrow2sinx\left(cosx+2cos^2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\2cos^2x+cosx-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
ĐKXĐ: \(x\ne k\pi\)
\(sin7x=sin^2x+2sinx.cos2x+2sinx.cos4x+2sinx.cos6x\)
\(\Leftrightarrow sin7x=sin^2x+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)
\(\Leftrightarrow sin7x=sin^2x-sinx+sin7x\)
\(\Leftrightarrow sinx\left(sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(loại\right)\\sinx=1\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
\(sinx\left(1+2cos2x+2cos4x+2cos6x\right)\)
\(=sinx+2sinx.cos2x+2sinx.cos4x+2sinx.cos6x\)
\(=sinx+sin3x+sin\left(-x\right)+sin5x+sin\left(-3x\right)+sin7x+sin\left(-5x\right)\)
\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)
\(=sin7x\)
\(sin\dfrac{3x}{2}\left(cosx+cos4x+cos7x\right)\)
\(=\)\(sin\dfrac{3x}{2}.cosx+sin\dfrac{3x}{2}.cos4x+sin\dfrac{3x}{2}.cos7x=\dfrac{1}{2}\left[sin\dfrac{x}{2}+sin\dfrac{5x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{5x}{2}\right)+sin\dfrac{11x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{11x}{2}\right)+sin\dfrac{17x}{2}\right]\)
\(=\dfrac{1}{2}\left(sin\dfrac{x}{2}+sin\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.2.sin\dfrac{9x}{2}.cos4x=sin\dfrac{9x}{2}.cos4x\)
\(sin\dfrac{3x}{2}\left(sinx+sin4x+sin7x\right)\)
\(=sin\dfrac{3x}{2}.sinx+sin\dfrac{3x}{2}.sin4x+sin\dfrac{3x}{2}.sin7x\)\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{5x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-5x}{2}-cos\dfrac{11x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-11x}{2}-cos\dfrac{17x}{2}\right)\)
\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.-2.sin\dfrac{9x}{2}.sin\left(-4x\right)=sin\dfrac{9x}{2}.sin4x\)
Có \(\dfrac{cos7x+cos4x+cosx}{sin7x+sin4x+sinx}\)
\(=\dfrac{sin\dfrac{3x}{2}\left(cos7x+cos4x+cosx\right)}{sin\dfrac{3x}{2}\left(sin7x+sin4x+sinx\right)}\)\(=\dfrac{sin\dfrac{9x}{2}.cos4x}{sin\dfrac{9x}{2}.sin4x}\)\(=\dfrac{cos4x}{sin4x}\)
\(\Rightarrow\dfrac{cos4x}{sin4x}=\dfrac{1}{2}\)
\(\Leftrightarrow2cos4x=sin4x\)
\(\Leftrightarrow4.cos^24x=sin^24x\)
\(\Leftrightarrow4.cos^24x=1-cos^24x\)\(\Leftrightarrow cos^24x=\dfrac{1}{5}\Leftrightarrow\dfrac{1+cos8x}{2}=\dfrac{1}{5}\)
\(\Leftrightarrow cos8x=-\dfrac{3}{5}\)
Vậy..