3. P = \(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}\) tìm a để P > 1 với a ≥ 0 , a≠4
4. P= \(\dfrac{\sqrt{a}-1}{\sqrt{a}-4}\) tìm a để P< 1 với a ≥ 0, a≠16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\sqrt{a}-2< 0\)
hay a<4
Kết hợp ĐKXĐ, ta được: \(0\le a< 4\)
5: Để P>0 thì \(x-4\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}-4>0\)
hay x>16
\(a,A=4\sqrt{3}-5\sqrt{3}+2-\sqrt{3}=2-2\sqrt{3}\\ B=\dfrac{x+2\sqrt{x}+8+2\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-4}\\ b,B-\dfrac{1}{2}A=\dfrac{\sqrt{x}}{\sqrt{x}-4}-\dfrac{1}{2}\left(2-2\sqrt{3}\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-4}=1+\sqrt{3}\\ \Leftrightarrow\sqrt{x}=\left(1+\sqrt{3}\right)\left(\sqrt{x}-4\right)\Leftrightarrow\sqrt{x}=\sqrt{x}-4\sqrt{3}+\sqrt{3x}-4\\ \Leftrightarrow\sqrt{3x}=4\sqrt{3}+4\\ \Leftrightarrow\sqrt{x}=\dfrac{4\sqrt{3}+4}{\sqrt{3}}\\ \Leftrightarrow\sqrt{x}=\dfrac{12+4\sqrt{3}}{3}\\ \Leftrightarrow x=\dfrac{192+96\sqrt{3}}{9}=\dfrac{64+32\sqrt{3}}{3}\)
a:
Sửa đề: a+2căn a+8
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}-a-2\sqrt{a}-8}{\left(a-4\right)}\)
\(=\dfrac{7a-\sqrt{a}-14}{\left(a-4\right)}\)
b: A>0
=>(7a-căn a-14)/(a-4)>0
=>a>4 hoặc 0<a<(1+căn 393)/14
\(a,M=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\\ M=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,M< \dfrac{1}{6}\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{6}< 0\\ \Leftrightarrow\dfrac{2\sqrt{a}-4-\sqrt{a}}{6\sqrt{a}}< 0\Leftrightarrow\dfrac{\sqrt{a}-4}{6\sqrt{a}}< 0\\ \Leftrightarrow\sqrt{a}-4< 0\left(6\sqrt{a}>0\right)\\ \Leftrightarrow a< 16\\ \Leftrightarrow0< a< 16\left(kết.hợp.ĐKXĐ\right)\)
9.
\(A>1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp với điều kiện giả thiết.
10.
\(P< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-1< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp với điều kiện giả thiết.
3.
\(P>1\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-2}>1\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-1>0\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\dfrac{3}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\sqrt{a}-2>0\)
\(\Leftrightarrow a>4\)
Vậy \(a>4,a\ne16\)
3: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow a>4\)