Tìm GTNN của biểu thức:
A=\(\left|x-2010\right|+\left(y+2011\right)^{2010}+201\) và giá trị tương ứng của x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |x-2010|\(\ge\)0
(y+2011) 2010\(\ge\)0
=>|x-2010|+(y+2011) 2010\(\ge\)0
=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011
Dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0
<=>x=2010 và y=-2011
Vậy Amin=2011 khi x=2010 và y=-2011
Lời giải:
Ta thấy:
\(|x-2010|\geq 0, \forall x\in\mathbb{R}\)
\((y+2011)^{2010}=[(y+2010)^{1005}]^2\geq 0, \forall y\in\mathbb{R}\)
\(\Rightarrow A=|x-2010|+(y+2011)^{2010}+2011\geq 0+0+2011=2011\)
Vậy GTNN của $A$ là $2011$.
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2010=0\\ y+2011=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2010\\ y=-2011\end{matrix}\right.\)
A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011
≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011
= |y-2010|+|x-2011|+2012≥2012
Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0
<=> {y=2010x=2011{y=2010x=2011
Vay GTNN cua A=2012 khi {x=2011;y=2010
vì |x-2010|\(\ge\)0
(y+2011) 2010\(\ge\)0
=>|x-2010|+(y+2011) 2010\(\ge\)0
=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011
dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0
<=>x=2010 và y=-2011
vậy Amin=2011 khi x=2010 và y=-2011
\(\Leftrightarrow\)A=\(\left|x-2010\right|+\left|x-2011\right|\)=\(\left|x-2010\right|+\left|2011-x\right|\)\(\ge\)\(\left|x-2010+2011-x\right|\)=1
Dấu ''='' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2010\ge0\\2011-x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2010\\x\le2011\end{cases}}\)\(\Leftrightarrow\)\(2010\le x\le2011\)
Vậy Min A =1 \(\Leftrightarrow2010\le x\le2011\)
A=/x-2008/+/2009-x/+/y-2010/+/x-2011/+2011
≥/x-2008+2009-x/+/y-2010/+/x-2011/+2011
= /y-2010/+/x-2011/+2012≥2012
Dau bang xay ra khi : \(\left\{{}\begin{matrix}y-2010=0\\x-2011=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}y=2010\\x=2011\end{matrix}\right.\)
Vay GTNN cua A=2012 khi \(\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)
Ta có :
\(\left|x-2010\right|\ge0\)
và \(\left(y+2011\right)^{2010}\ge0\)
Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2010\right|=0\\\left(y+2011\right)^{2010}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2010=0\\y+2011=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)
Vậy GTNN của A xảy ra khi
\(\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)
.....
Lời giải:
\(A=|x-2010|+(y+2011)^{2010}+201\)
Ta thấy:
\(|x-2010|\geq 0\forall x\in\mathbb{R}\)
\((y+2011)^{2010}=[(y+2011)^{1005}]^{2}\geq 0\forall y\in\mathbb{R}\)
\(\Rightarrow A\geq 0+0+201\Leftrightarrow A\ge 201\)
Do đó: GTNN của $A$ là $201$
Dấu bằng xảy ra khi \(\left\{\begin{matrix} |x-2010|=0\\ (y+2011)^{2010}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2010\\ y=-2011\end{matrix}\right.\)