K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

a ) 10n + 72n - 1 chia hết cho 81

+ ) n = 0 => 100 + 72 . 0 - 1 = 0

+ ) Giả sử đúng đến n = k tức là :

( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1

Tức là : 10k + 1 + 72 x k + 71

=> 10 . 10k + 72k + 71

=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)\(\frac{648k+27}{chiahetcho81}\)

=> đpcm

Câu b và c làm tương tự

13 tháng 2 2016

Đặt B= 10n+72n-1

B = 10ⁿ + 72n - 1

  = 10ⁿ - 1 + 72n

Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)  

   = 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n

=> A : 9 = 11..1 + 8n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9

= 11...1 -n + 9n
=> A : 9 =  chia hết cho 9
=> A chia hết cho 81

20 tháng 2 2016

a) Đặt cái cần chứng minh là (*)

+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng

+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81

Thật vậy:

10k + 1 + 72(k + 1) - 1

= 10k.10 + 72k + 72 - 1

= 10k + 72k + 9.10k + 72 - 1

= (10k + 72k - 1) + 9.10k + 72

đến đây tui ... chịu :))

22 tháng 2 2016

Nhọ Nồi Dù sao thì cx camon's -_-

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a)

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b)

= 2(12n +5) chia hết cho 2

NV
11 tháng 2 2020

a/ \(=lim\frac{\left(-\frac{2}{3}\right)^n+1}{-2.\left(-\frac{2}{3}\right)^n+3}=\frac{1}{3}\)

b/ \(=lim\frac{\left(2-\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\left(3+\frac{4}{n}\right)}{\left(\frac{5}{n}-6\right)^3}=\frac{2.1.3}{\left(-6\right)^3}=-\frac{1}{36}\)

c/ \(=lim\frac{5n+3}{\sqrt{n^2+5n+1}+\sqrt{n^2-2}}=\frac{5+\frac{3}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{2}{n}}}=\frac{5}{1+1}=\frac{5}{2}\)

d/ \(=lim\frac{5.\left(\frac{1}{2}\right)^n-6}{4.\left(\frac{1}{3}\right)^n+1}=\frac{-6}{1}=-6\)

e/ \(=-n^3\left(2+\frac{3}{n}-\frac{5}{n^2}+\frac{2020}{n^3}\right)=-\infty.2=-\infty\)

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)