cho tam giác ABC nhọn, đường cao BD,CE. Gọi H,K là hình chiếu của B,C trên đường thẳng DE
a) CMR: HE=KC
b) Nếu tam giác ABC cân tại A thì tứ giác BCKH là hình gì
GIÚP MK VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu tg ABC cân tại A
Dễ thấy \(\Delta AEC=\Delta ADB\left(ch-gn\right)\)
Do đó \(AE=AF\Rightarrow\Delta AEF\) cân tại A
\(\Rightarrow\widehat{AED}=\widehat{ADE}\)
Mà \(\left\{{}\begin{matrix}\widehat{AED}=\widehat{HEB}\\\widehat{ADE}=\widehat{CKD}\end{matrix}\right.\Rightarrow\widehat{HEB}=\widehat{CKD}\)
Mà \(\widehat{EHB}=\widehat{DKC}\left(=90^0\right);BE=CD\left(AB-AE=AC-AD\right)\)
Do đó \(\Delta BHE=\Delta CKD\left(ch-gn\right)\)
\(\Rightarrow BH=CK\)
Mà \(BH//CK\left(\perp HK\right)\)
Do đó BCKH là hbh
Mà \(\widehat{KHB}=90^0\) nên BCKH là hcn
gọi O là tr.điểm BC,I là tr.điểm DE
tam giác BEC có O là tr.điểm DE nên OE là trung tuyến ứng với cạnh huyền BC
=>OE=OB=OC(=1/2BC)
CMTT có OD=OB=OC(=1/2BC)
=>OE=OD=>tam giác ODE cân tại O
tam giác ODE cân ở O có OI là trung tuyến (I là tr.điểm DE) nên OI cũng là đg cao
=>OI _|_ ED hay OI _|_ HK
Mà BH _|_ HK , CK _|_ HK
=>OI//BH//CK => BCKH là hình thang
Dễ CM I là tr.điểm HK => IH=IK
Có IE+EH=IH , ID+DK=IK ,mà IH=IK,IE=ID
=>EH=DK
Tam giác ABC cân tại A => góc ABC = ACB => tam giác BEC = CDB (cạnh huyền - góc nhọn )
=> BE = CD; Mà AB = AC => \(\frac{BE}{AB}=\frac{CD}{AC}\). Theo ĐL Ta - let => DE // BC
=> HK // BC Mà CK // BH (vì cùng vuông góc với DE )
=> Tứ giác BCKH là hbh có: góc BHK vuông => BCKH là hcn
Gọi M là trung điểm của BC, dễ dàng chứng minh được tam giác MDE cân ở đỉnh M.
Gọi I là trung điểm của DE thìgiacsvuoong góc DE, suy ra MI // BH //CE. MI là đường trung bình của hình thang BHKC, ta có IH = IK.
Từ đó suy ra IH- IE = IK - ID.
do đó HE = KD.
1.
a. CN và BM cùng vuông góc DE nên CN//BM
\(\Rightarrow\) BMNC là hình thang vuông tại M và N
b. Theo giả thiết BD vuông góc CA \(\Rightarrow\Delta BDC\) vuông tại D
\(\Rightarrow DO\) là trung tuyến ứng với cạnh huyền BC \(\Rightarrow DO=\dfrac{1}{2}BC\)
Tương tự trong tam giác vuông BEC thì EO là trung tuyến ứng với cạnh huyền
\(\Rightarrow EO=\dfrac{1}{2}BC\Rightarrow DO=EO\Rightarrow\) tam giác cân tại O
c. Tam giác DEO cân tại O, mà P là trung điểm DE \(\Rightarrow OP\) là trung tuyến đồng thời là đường cao
\(\Rightarrow OP\perp DE\) \(\Rightarrow OP//CN//BM\)
Mà O là trung điểm BC \(\Rightarrow OP\) là đường trung bình hình thang BMNC
\(\Rightarrow OP=\dfrac{CN+BM}{2}\)
2. Đặt biểu thức là A
Với \(p=2\) ko thỏa mãn
Với \(p=3\Rightarrow A=71\) là SNT
Với \(p>3\) do p là SNT nên p chỉ có 2 dạng \(p=3k+1\) hoặc \(3k+2\)
- Với \(p=3k+1\Rightarrow p^3\) chia 3 dư 1, \(p^2\) chia 3 dư 1, \(11p=9p+2p\) chia 3 dư 2
\(\Rightarrow A\) chia 3 dư 1+1+2+2=6 chia hết cho 3 (ko là SNT) loại
- Với \(p=3k+2\) tương tự, \(p^3\) chia 3 dư 2, \(p^2\) chia 3 dư 1, \(11p\) chia 3 dư 1
\(\Rightarrow\) A chia 3 dư 2+1+1+2=6 vẫn chia hết cho 3 (loại)
Vậy \(p=3\) là giá trị duy nhất thỏa mãn
Em cảm ơn anh nhiều ạ . Anh có thể cho e xin cách làm bài 2 được k ạ