K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xéttứ giác OAIB có

góc OAI+góc OBI=180 độ

=>OAIB là tứ giác nội tiếp đường tròn đường kính OI(1)

ΔOHI vuông tại H

nên H nằm trên đường tròn đường kính OI(2)

Từ (1), (2) suy ra O,A,I,B,H cùng nằm trên 1 đường tròn

b: Xet (O) có

IA,IB là tiếp tuyến

nên IA=IB

mà OA=OB

nên OI là trung trực của AB

=>OI vuông góc AB tại P

=>OP*OI=OA^2=OD^2

22 tháng 3 2021

Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$

$⇒OI ⊥BC$ (tính chất)

Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn

$⇒AM⊥OM;AN⊥ON;AM=AN$

Xét tứ giác $AMON$ có:

$\widehat{AMO}=\widehat{ANO}=90^o$

$⇒\widehat{AMO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)

$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)

Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$

$⇒\widehat{AIO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)

hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)

Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)

b, $K$ sẽ là giao điểm của $MN$ và $AC$

5 điểm $A;I;O;M;N$ thuộc 1 đường tròn

$⇒$ Tứ giác $AMIN$ nội tiếp

$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)

Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$

$⇒\widehat{AMN}=\widehat{ANM}$

$⇒\widehat{AIM}=\widehat{AMN}$

hay $\widehat{AIM}=\widehat{AMK}$

Xét $\triangle AIM$ và $\triangle AMK$ có:

$\widehat{AIM}=\widehat{AMK}$

$\widehat{A}$ chung

$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$

$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$

$ ⇒AK.AI=AM^2(3)$

Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)

Xét $\triangle AMB$ và $\triangle ACM$ có:

$\widehat{AMB}=\widehat{ACM}$ 

$\widehat{A}$ chung

$⇒\triangle AMB \backsim \triangle ACM(g.g)$

$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$

Hay $AB.AC=AM^2(4)$ 

Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$

undefined

22 tháng 3 2021

GIÚP MÌNH VỚI

 

 

12 tháng 11 2021

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

27 tháng 5 2022

A B C I K O H M E P

a/

Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì đường thẳng nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối 2 tiếp điểm

\(\Rightarrow AO\perp BC\) (đpcm)

\(\Rightarrow BH=CH=\dfrac{BC}{2}\)

b/

Ta có

B và C cùng nhìn AO dưới 1 góc vuông nên B và C cùng nằm trên đường tròn đường kính AO => A; O; B; C cùng nằm trên 1 đường tròn

c/

Ta có sđ cung IB = sđ cung IC ( Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì chia đôi cung chắn bởi hai tiếp điểm)

Xét tg vuông IBK và tg vuông IBH có

\(sđ\widehat{IBK}=\dfrac{1}{2}sđ\) cung IB (góc giữa tiếp tuyến và dây cung)

\(sđ\widehat{IBH}=\dfrac{1}{2}sđ\) cung IC (góc nội tiếp đường tròn)

Mà sđ cung IB = sđ cung IC (cmt)

\(\Rightarrow\widehat{IBK}=\widehat{IBH}\)

cạnh huyền IB chung

\(\Rightarrow\Delta IBK=\Delta IBH\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) 

\(\Rightarrow IK=IH\) (đpcm)

d/ Mình nghĩ mãi chỉ có 1 cách nhưng hơi dài mình nói cách làm thôi nhé

Vận dụng các hệ thức lượng trong tg vuông và t/c của hai tiếp tuyến cùng xp từ 1 điểm Sẽ tính được AB=AC;BC; AH từ đó tính được diện tích tg ABC 

Vận dụng công thức \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin\widehat{KAE}\) từ đó tính được \(\sin\widehat{KAE}\)

Tương tự ta cũng tính được \(\sin\widehat{AKE}\)

Vận dụng định lý hàm sin

\(\dfrac{KE}{\sin\widehat{KAE}}=\dfrac{AE}{\sin\widehat{AKE}}\Rightarrow\dfrac{KM+EM}{\sin\widehat{KAE}}=\dfrac{AC+EC}{\sin\widehat{AKE}}\)

Mà KM=KB (hai tiếp tuyến cùng xp từ 1 điểm)

tg IBK = tg IBH (cmt) => KB=BH

=> KB=KM=BH Mà BH tính được AC tính được; EM=EC (2 tiếp tuyến cùng xp từ 1 điểm)

Giải PT để tìm EC Từ đó tính được AK; KE; AE

\(\Rightarrow S_{AKE}=\dfrac{1}{2}\left(AK+KE+AE\right).R\)

Bạn tự làm nhé

27 tháng 5 2022

loading...

a ) Ta có : AB , AC là tiếp tuyến của (O)

⇒AB⊥OB,AC⊥OC

⇒ABO^+ACO^=900+900=1800⇒ABOC nội tiếp

b ) Vì AB là tiếp tuyến của (O)

⇒ABE^=ADB^⇒ΔABE∼ΔADB(g.g)

⇒ABAD=AEAB⇒AB2=AE.AD

c ) Ta có :

25 tháng 1 2023

Đề là đường kính AD hay sao nhỉ?

25 tháng 1 2023

Mình làm tắt nha bạn không hiểu đâu thì hỏi lại nhé

a) MA, MB là tiếp tuyến

=> \(\widehat{OBM}=\widehat{OAM}=90^o\) (t/c tiếp tuyến)

=> \(\widehat{OBM}+\widehat{OAM}=180^o\)

mà 2 góc đối nhau

=> tứ giác AOBM nội tiếp

=> 4 điểm A, O, B, M cùng thuộc 1 đường tròn

b) Áp dụng hệ thức lượng vào tam giác OAM vuông tại A đường cao AH

=> \(AM^2=MH.MO\)

Áp dụng hệ thức lượng vào tam giác DAM vuông tại A đường cao AC

=> \(AM^2=MC.MD\)

=> \(AM^2=MH.MO=MC.MD\)