Tìm x biết :
\(\dfrac{x+4}{2013}+\dfrac{x+3}{2014}=\dfrac{x+2}{2015}+\dfrac{x+1}{2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}-\dfrac{x-3}{2014}=\dfrac{x-4}{2013}\)
\(\Leftrightarrow\dfrac{x-1}{2016}+\dfrac{x-2}{2015}=\dfrac{x-4}{2013}+\dfrac{x-3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)=\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-3}{2014}-1\right)\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{2013}+\dfrac{x-2017}{2014}\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}=0\)
\(\Leftrightarrow x-2017.\left(\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)
\(\text{Mà }\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2103}\ne0\Rightarrow x-2017=0\)
\(\Leftrightarrow x=2017\) \(\text{Vậy }x=2017\)
\(\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}=5\)
\(\Leftrightarrow\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-5=0\)
\(\Leftrightarrow\dfrac{x}{2012}-1+\dfrac{x+1}{2013}-1+\dfrac{x+2}{2014}-1+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-1=0\)
\(\Leftrightarrow\dfrac{x-2012}{2012}+\dfrac{x-2012}{2013}+\dfrac{x-2012}{2014}+\dfrac{x-2012}{2015}+\dfrac{x-2012}{2016}=0\)
\(\Leftrightarrow\left(x-12\right).\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x-12=0\)
\(\Leftrightarrow x=12\)
\(\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)
<=>\(\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)
<=>(x+2017)(1/2016+1/2015-1/2014-1/2013)=0
vì 1/2016+1/2015-1/2014-1/2013 khác 0
nên x+2017=0<=>x=-2017
vậy................
chúc bạn học tốt ^^
\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}+1=\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}+1\)
\(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
\(\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ x+2018=0\\ x=-2018\)
a) Ta có: \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2014}\right)\left(1-\dfrac{1}{2015}\right)\left(1-\dfrac{1}{2016}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2013}{2014}\cdot\dfrac{2014}{2015}\cdot\dfrac{2015}{2016}\)
\(=\dfrac{1}{2016}\)
b) Ta có: \(\dfrac{x-2}{12}+\dfrac{x-2}{20}+\dfrac{x-2}{30}+\dfrac{x-2}{42}+\dfrac{x-2}{56}+\dfrac{x-2}{72}=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\cdot\dfrac{2}{9}=\dfrac{16}{9}\)
\(\Leftrightarrow x-2=\dfrac{16}{9}:\dfrac{2}{9}=\dfrac{16}{9}\cdot\dfrac{9}{2}=8\)
hay x=10
Vậy: x=10
a/ \(\left(4x-5\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=0\\3x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy ............
b/ \(\dfrac{x+1}{2016}+\dfrac{x+2}{2015}=\dfrac{x+3}{2014}+\dfrac{x+4}{2013}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x+2}{2015}+1\right)=\left(\dfrac{x+3}{2014}+1\right)+\left(\dfrac{x+4}{2013}+1\right)\)
\(\Leftrightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)
\(\Leftrightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)
\(\Leftrightarrow x+2017\left(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)
Mà \(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\ne0\)
\(\Leftrightarrow x+2017=0\)
\(\Leftrightarrow x=-2017\)
Vậy ..
\(\left(4x-5\right)\left(3x+2\right)=0\)
\(\)\(\Rightarrow\left[{}\begin{matrix}4x-5=0\\3x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
\(\dfrac{x+1}{2016}+\dfrac{x+2}{2015}=\dfrac{x+3}{2014}+\dfrac{x+4}{2013}\)
\(\Rightarrow\dfrac{x+1}{2016}+1+\dfrac{x+2}{2015}+1=\dfrac{x+3}{2014}+1+\dfrac{x+4}{2013}+1\)
\(\Rightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)
\(\Rightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)
\(\Rightarrow\left(x+2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)
Vì \(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\ne0\)
Nên:
\(x+2017=0\Rightarrow x=-2017\)
\(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)
\(\Leftrightarrow\dfrac{x+4}{2012}+1+\dfrac{x+3}{2013}+1=\dfrac{x+2}{2014}+1+\dfrac{x+1}{2015}\)
\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}=\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\)
\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}-\left(\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\right)=0\)
\(\Leftrightarrow x+2016.\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\right)\)
Vì \(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\ne0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
Vậy \(x=-2016\) tại biểu thức \(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)
Theo đề ta có: x+4/2012+x+3/2013=x+2/2014+x+1/2015
=>x+4/2012+x+3/2013-x+2/2014+x+1/2015=0
=>( x+4/2012+1)+(x+3/2013+1)-(x+2/2014+1)+(x+1/2015+1)
=>x+2016/2012+x+2016/2013-x+2016/2014-x+2016/2015=0
=>x+2016.(1/2012+1/2013-1/2014-1/2015)=0
Do 1/2012+1/2013-1/2014-1/2015>0
nên x+2016=0
=>x=-2016
Vậy x=-2016
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}+\dfrac{x+4}{2012}+\dfrac{x+2024}{2}=0\)
\(\Leftrightarrow(\dfrac{x+1}{2015}+1)+(\dfrac{x+2}{2014}+1)+(\dfrac{x+3}{2013}+1)+(\dfrac{x+4}{2012}+1)+\dfrac{x+2024}{2}-4=0\)\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}+\dfrac{x+2016}{2}=0\)\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}\right)=0\)
Hiển nhiên: \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}>0\)
\(\Leftrightarrow x+2016=0\Leftrightarrow x=-2016\)
Giải:
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Leftrightarrow2+\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=2+\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Leftrightarrow1+\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}=1+\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}\)
\(\Leftrightarrow\left(1+\dfrac{x+1}{2015}\right)+\left(1+\dfrac{x+2}{2014}\right)=\left(1+\dfrac{x+3}{2013}\right)+\left(1+\dfrac{x+4}{2012}\right)\)
\(\Leftrightarrow\dfrac{x+1+2015}{2015}+\dfrac{x+2+2014}{2014}=\dfrac{x+3+2013}{2013}+\dfrac{x+4+2012}{2012}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Vì \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
Nên \(x+2016=0\)
\(\Leftrightarrow x=0-2016\)
\(\Leftrightarrow x=-2016\)
Vậy ...
Chúc bạn học tốt!
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Rightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}+1\)
\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)
\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Rightarrow\left(x+2016\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
do \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
\(\Rightarrow x+2016=0\Rightarrow x=2016\)
váy x=2016
. Đây nha