K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\sqrt{7}+1\)

b: \(=\sqrt{5}+\sqrt{2}\)

c: \(=\sqrt{5}-\sqrt{3}\)

d: \(=2\sqrt{3}-\sqrt{7}\)

3 tháng 10 2021

\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)

bạn giải chi tiết giúp mk đc k ạ

 

a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)

\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)

\(=33\sqrt{3}\cdot\sqrt{3}\)

=99

b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)

\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)

c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=36-36\sqrt{2}+18\sqrt{3}\)

d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)

\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)

\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)

\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)

2 tháng 7 2021

a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)

   \(=28.3+9.3-4.3=99\)

b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)

  \(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)

3 tháng 9 2018

\(a.\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

\(b.\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)

\(=\sqrt{2}+5-\left(\sqrt{2}-5\right)=\sqrt{2}+5-\sqrt{2}+5=10\)

- Tự làm mấy câu còn lại cho quen đi b

3 tháng 9 2018

câu d bạn ra bao nhiêu

a) Sửa đề: \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}\)

Ta có: \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{7+2\cdot\sqrt{7}\cdot1+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}\)

\(=\left|\sqrt{7}+1\right|-\sqrt{7}\)

\(=\sqrt{7}+1-\sqrt{7}\)

=1

b) Ta có: \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}\)

\(=\sqrt{4+2\cdot2\cdot\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}\)

\(=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}\)

\(=2-\sqrt{3}\)

c) Ta có: \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\cdot\sqrt{13}\cdot1+1}+\sqrt{13+2\cdot\sqrt{13}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1\)

\(=2\sqrt{13}\)

d) Ta có: \(D=\sqrt{22-2\sqrt{21}}-\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\cdot\sqrt{21}\cdot1+1}-\sqrt{21+2\cdot\sqrt{21}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}-\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|-\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1-\left(\sqrt{21}+1\right)\)

\(=\sqrt{21}-1-\sqrt{21}-1\)

=-2

6 tháng 10 2020

a, \(\sqrt{8-2\sqrt{15}}\)

= \(\sqrt{3-2\sqrt{15}+5}\)

= \(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)

= |\(\sqrt{3}-\sqrt{5}\)| = \(\sqrt{5}-\sqrt{3}\) (Do \(\sqrt{5}>\sqrt{3}\))

b, \(\sqrt{9-4\sqrt{5}}\)

= \(\sqrt{5-4\sqrt{5}+4}\)

= \(\sqrt{\left(\sqrt{5}-2\right)^2}\)

= \(\sqrt{5}-2\) (Lười quá bỏ trị tuyệt đối cũng được :v)

Phần c sao sao ý (chắc do mk ngu :v)

d, \(\sqrt{7-2\sqrt{10}}+\sqrt{20}+\frac{1}{2}\sqrt{8}\)

= \(\sqrt{5-2\sqrt{10}+2}+\sqrt{20}+\sqrt{2}\)

= \(\sqrt{5}-\sqrt{2}+\sqrt{20}+\sqrt{2}\)

= \(\sqrt{5}+\sqrt{20}\)

= \(\sqrt{5}\left(1+\sqrt{4}\right)\) = \(3\sqrt{5}\)

Chúc bn học tốt! (Sorry phần c mk thấy sao sao ý nên chịu :v)

2 tháng 8 2018

d, \(D=\sqrt{3+2\sqrt{2}}=\sqrt{2+2.\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

e,\(E=\sqrt{8-2\sqrt{15}}=\sqrt{5-2.\sqrt{5}.\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}\)

2 tháng 8 2018

a,ĐKXĐ: \(\forall x\in R\)

\(\Rightarrow A=\left|a+3\right|+\left|a-3\right|\)\(=\left|-a-3\right|+\left|a-3\right|\)

Vì \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) *Dấu ''='' xảy ra\(\Leftrightarrow A.B\ge0\) *

\(\Rightarrow A\ge\left|-a-3+a-3\right|=6\)

Dấu ''='' xảy ra \(\Leftrightarrow\left(-a-3\right)\left(a-3\right)\ge0\Leftrightarrow\left(a+3\right)\left(a-3\right)\ge0\)

\(\Leftrightarrow-3\le a\le3\)

Vậy ...

7 tháng 7 2021

b)\(27-10\sqrt{2}=5^2-2.5\sqrt{2}+2=\left(5-\sqrt{2}\right)^2\)

c)\(18-8\sqrt{2}=4^2-2.4\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)

d)\(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

e)\(6\sqrt{5}+14=9+2.3\sqrt{5}+5=\left(3+\sqrt{5}\right)^2\)

f)\(20\sqrt{5}+45=5^2+2.5.2\sqrt{5}+20=\left(5+2\sqrt{5}\right)^2\)

g)\(7-2\sqrt{6}=6-2\sqrt{6}+1=\left(\sqrt{6}-1\right)^2\)

7 tháng 7 2021

Thanks