K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

Nối M với N .

Dùng công thức đường trung bình của hình tam giác , ta có :
NM // BC và NM = \(\dfrac{1}{2}\) BC
Cm : Tam giác MNH vuông , dùng định lí pytago ta suy ra được MN=25 và BC=50 (vì MN = \(\dfrac{1}{2}\) BC)
Từ đây ta suy ra được BA=40 và AC=30
Vì tam giác ABC vuông nên ta có công thức : BA . AC = BC . AH
40 . 30 = 50 . AH
Ta suy ra : AH = 24
Tam giác ABH vuông tại A , ta dùng định lí pytago suy ra HB=32 và HC=18 ( HC + BH = BC = 50 )
Suy ra BH = 32 ; CH = 18 ; AH = 24

26 tháng 10 2019

Xét ∆ ABC vuông tại A có M là trung điểm AB

=> HM là đường trung tuyến ứng với cạnh huyền AB

=> HM = 1 2 AB => AB = 2HM = 2. 15 = 30 (cm)

Xét ∆ ACH vuông tại H có N là trung điểm AC

=> HN là đường trung tuyến ứng với cạnh huyền AC

=> HN = 1 2 AC => AC = 2HN = 2. 20 = 40 (cm)

Áp dụng định lý Pitago cho ABH vuông tại A có:

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

Ta có: HC = BC – BH = 50 – 18 = 32 (cm)

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

AH.BC = AB.AC => AH.50 = 30.40 => AH = 24 (cm)

Đáp án cần chọn là: D

15 tháng 7 2016

B A C H N M

tam giác AHB vuông tại H có HM là trung tuyến ứng với cạnh huyền AB=> HM=1/2AB=>AB=2HM=2.15=30cm

tam giác AHC vuông tại H có HN là trung tuyến ứng với cạnh huyền AC=>HN=1/2AC=>AC=2HN=2.20=40 cm

tam giác ABC vuông tại A =>\(BC^2=AB^2+AC^2suyraBC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50cm\)

ta có AH.BC=AB.AC=>AH=[30.40]/50=24cm hệ thức lượng tam giác vuông

ta có \(AB^2=BH.BCsuyraBH=\frac{AB^2}{BC}=\frac{30^2}{50}=18cm\)

suy ra HC=BC-BH=50-18=32cm

A B C H M N

Vì M là trung điểm của AB => HM là trung tuyến 

Mà \(\Delta ABH\)vuông tại H 

=> \(HM=\frac{1}{2}AB\)( trong tam giác vuông trung tuyến ứng với cạnh huyền = 1 phần 2 cạnh huyền )

=> AB = 30 cm

Chứng minh tương tự 

=> AC= 40 cm

Xét \(\Delta ABC\)có ( A = 900 )

=> \(BC=\sqrt{AC^2+AB^2}=50\)cm

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Rightarrow\frac{1}{AH}=\sqrt{\frac{1}{AB^2}+\frac{1}{AC^2}}=\frac{1}{24}\)

\(\Rightarrow AH=24cm\)

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(AB^2=BH.BC\)

\(\Rightarrow BH=AB^2:BC=18cm\)

Vì BH + HC = BC 

\(\Rightarrow HC=50-18=32cm\)

Study well 

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

a: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

HB=15^2/25=9cm

=>HC=16cm

b: Xét ΔCAB vuông tại A và ΔAHB vuông tại H có

góc B chung

=>ΔCAB đồng dạng với ΔAHB

c: Xét ΔABC vuôg tại A co AH là đường cao

nen AH^2=HB*HC

d: góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>M,I,N thẳng hàng

e: AM*AB=AH^2

AN*AC=AH^2

=>AM*AB=AN*AC

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

XétΔABC vuông tại A có \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

=>\(\widehat{B}\simeq53^0\)

b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)

\(HB=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)

HC=BC-HB=3,2(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔHCA vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

d: Xét tứgiác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)

nên AMHN là tứ giác nội tiếp

Xét (AH/2) có

\(\widehat{ANM}\) là góc nội tiếp chắn cung AM

\(\widehat{AHM}\) là góc nội tiếp chắn cung AM

DO đó: \(\widehat{ANM}=\widehat{AHM}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AE là đường trung tuyến

nên AE=CE
=>\(\widehat{EAC}=\widehat{C}\)

\(\widehat{ANM}+\widehat{EAC}=\widehat{B}+\widehat{C}=90^0\)

=>AE\(\perp\)MN

2 tháng 9 2017

tự vẽ hình nha bn

a. Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)(Theo định lí Pytago, tam giác ABC vuông tại A)

b. Ta có: \(\frac{BH}{CH}=\frac{3}{4}\)

\(\Leftrightarrow\frac{BH+CH}{CH}=\frac{3}{4}+1\)

\(\Leftrightarrow\frac{BC}{CH}=\frac{7}{4}\)\(\Leftrightarrow\frac{5}{CH}=\frac{7}{4}\)\(\Leftrightarrow CH=\frac{5.4}{7}=\frac{20}{7}\)

\(\Rightarrow BH=5-\frac{20}{7}=\frac{15}{7}\)

3 tháng 9 2017

c,d bạn giải giùm mình được không