K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Ta có x + y + z = 1 nên z = 1 - x - y.

Bất đẳng thức cần chứng minh tương đương:

\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)

\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).

Áp dụng bất đẳng thức Cauchy - Schwarz:

\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)

\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)

\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)

Cộng vế với vế của (1), (2) ta có đpcm.

 

 

2 tháng 8 2021

g. G(x)=2x²+2y2+z²+2xy-2xz-2yz-2x-4y

           = [x2+2x(y-z)+(y2-2yz+z2)]+(x2-2x+1)+(y2-4y+4)-5

          = (x+y-z)2+(x-1)2+(y-2)2-5

Vì (x+y-z)2≥0∀x,y,z

     (x-1)2≥0∀x

      (y-2)2≥0∀y

⇒ G  = (x+y-z)2+(x-1)2+(y-2)2-5 ≥ -5

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y-z=0\\x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=3\\x=1\\y=2\end{matrix}\right.\)

h,H(x)=x² + y²-xy-x+y+1

⇔ 2H=2x2+2y2-2xy-2x-2y+2

         = (x2-2xy+y2)+(x2-2x+1)+(y2-2y+1)

         = (x-y)2+(x-1)2+(y-1)2

Vì (x-y)2≥0 ∀x,y

    (x-1)2≥0 ∀x

     (y-1)2 ≥0 ∀y

⇒ 2H≥0 ⇒ H≥0

Dấu "=" xảy ra ⇔ x=y=1

2 tháng 8 2021

cảm ơn bn

 

18 tháng 6 2019

x, y, z thuộc gì thế bạn?

18 tháng 6 2019

À mình quên, x,y,z ∈ Z nhé ! Giúp mình với

31 tháng 8 2015

cậu hk lớp 8a hả

 

b: 5x^2+5y^2+8xy-2x+2y+2=0

=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0

=>(x-1)^2+(y+1)^2+(2x+2y)^2=0

=>x=1 và y=-1

M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1

12 tháng 11 2017

viết sai đề hết rồi

12 tháng 11 2017

rưa mi chỉnh t cấy

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9