K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

bai 1

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)

\(A=\left(\dfrac{1-2}{2}\right)\left(\dfrac{1-3}{3}\right).....\left(\dfrac{1-9}{10}\right)\)

\(A=-\left(\dfrac{1.2.3.....8.9}{2.3....9.10}\right)=-\dfrac{1}{10}>-\dfrac{1}{9}\)

17 tháng 8 2021

\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)

\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)

\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)

\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)

Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B

a: =>4y+15/16=1

=>4y=1/16

hay y=1/64

b: =>10y+1023/1024=1

=>10y=1/1024

hay  y=1/10240

`A = 3/4 xx 8/9 xx ... xx 99/100`

`= (1xx3)/(2xx2) xx (2xx4)/(3xx3) xx ... xx (9xx11)/(10xx10)`

`= (1xx2xx3xx ... xx 9)/(2xx3xx...xx10) xx (3xx4xx5xx...xx 11)/(2xx3xx4xx...xx 10)`

`= 1/10 xx 11`

`= 11/10`.

Ta có: `11/10 > 1`

`11/19 < 1`.

`=> A > 11/19`.

1 tháng 1 2018

\(A=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{10}-1\right)\)

\(=\left(\dfrac{1}{2}-\dfrac{2}{2}\right).\left(\dfrac{1}{3}-\dfrac{3}{3}\right)...\left(\dfrac{1}{10}-\dfrac{10}{10}\right)\)

\(=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}...\dfrac{-9}{10}\)

\(=\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-9\right)}{2.3.4...8.9.10}\)

\(=\dfrac{-1}{10}>\dfrac{-1}{9}\)

\(\Rightarrow A>-\dfrac{1}{9}\)

1 tháng 1 2018

Nguyễn Đang Huy người ta ngu còn hơn cái loại bảo người ta ngu

30 tháng 11 2021

2: \(=\dfrac{203}{60}\cdot\dfrac{81}{1225}=\dfrac{783}{3500}\)

22 tháng 10 2021

a: \(Q=\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)

\(=\dfrac{a+2\sqrt{a}+1}{a-\sqrt{a}}\)

22 tháng 10 2021

bn có thể giúp mk nốt 2 câu đc ko