Tìm x biết:
a, \(ax-x+1=a^2\) \(\left(a\ne1\right)\)
b, \(a^2x+x=2a^2-3\)
c, \(a^2x+3ax+9=a^2\) \(\left(a\ne0;a\ne-3\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Sử dụng các hằng đẳng thức
\(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)
và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Do (a - b) + (b - c) + (c - a) = 0 nên áp dụng hđt \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:
\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)
Bài 1 :
\(b,ax^2+3ax+9=a^2\)
\(\Leftrightarrow a^2x+3ax+9-a^2=0\)
\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\)
\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)
Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\)
\(\Leftrightarrow ax=a-3\)
Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\)
a) Do đa thức chia có bậc là 3 , đa thức bị chia có bậc 2 nên thương sẽ có bậc 1
Ta có : (x3+ ax2 + 5x +3) = (x2+ 2x + 3)( x + d)
(x3+ ax2 + 5x +3) = x3 + dx2 + 2x2 + 2dx + 3x + 3d
(x3+ ax2 + 5x +3) = x3 + x2( d + 2) + x( 2d + 3) + 3d
Đồng nhất hệ số , ta có :
d + 2 = a --> a = 1 + 2 = 3
2d + 3 = 5 --> 2.1 + 3 = 5
3d = 3 --> d = 1
Vậy , a = 3 thỏa mãn điều kiện đề bài
b) Tẹo tớ gửi nha
a: Ta có: \(ax-x+1=a^2\)
\(\Leftrightarrow x\left(a-1\right)=a^2-1\)
hay x=a+1