Bài 1 : tìm x
a) \(\dfrac{2012-x}{25}+\dfrac{2053-x}{23}+\dfrac{2070-x}{21}+\dfrac{2083-x}{19}-10=0\\ \)
b) \(x+\dfrac{13}{12}+\dfrac{21}{20}+\dfrac{31}{30}+\dfrac{43}{42}+\dfrac{57}{56}+\dfrac{73}{72}+\dfrac{91}{90}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{2032-x}{25}-1+\dfrac{2053-x}{23}-2+\dfrac{2070-x}{21}-3+\dfrac{2083-x}{19}-4=0\)
=>2007-x=0
hay x=2007
\(\dfrac{2032-x}{25}+\dfrac{2053-x}{23}+\dfrac{2070-x}{21}+\dfrac{2083-x}{19}=10\)
\(\Leftrightarrow\left(\dfrac{2032-x}{25}-1\right)+\left(\dfrac{2053-x}{23}-2\right)+\left(\dfrac{2070-x}{21}-3\right)+\left(\dfrac{2083-x}{19}-4\right)=0\)
\(\Leftrightarrow\dfrac{2032-x-25}{25}+\dfrac{2053-x-46}{23}+\dfrac{2070-x-63}{21}+\dfrac{2083-x-76}{19}=0\)
\(\Leftrightarrow\dfrac{2007-x}{25}+\dfrac{2007-x}{23}+\dfrac{2007-x}{21}+\dfrac{2007-x}{19}=0\)
\(\Leftrightarrow\left(2007-x\right)\left(\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\right)=0\)
\(\Leftrightarrow2007-x=0\left(vì.\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\ne0\right)\)
\(\Leftrightarrow x=2007\)
\(2x+\dfrac{7}{6}+\dfrac{13}{12}+\dfrac{21}{20}+\dfrac{31}{30}+\dfrac{43}{42}+\dfrac{57}{56}+\dfrac{73}{72}+\dfrac{91}{90}=10\)
\(2x+\left(1+\dfrac{1}{6}\right)+\left(1+\dfrac{1}{12}\right)+\left(1+\dfrac{1}{20}\right)+\left(1+\dfrac{1}{30}\right)+\left(1+\dfrac{1}{42}\right)+\left(1+\dfrac{1}{56}\right)+\left(1+\dfrac{1}{72}\right)+\left(1+\dfrac{1}{90}\right)=10\)
\(2x+8+\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)=10\)
\(2x+8+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)=10\)
\(2x+8+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)=10\)
\(2x+8+\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=10\)
~ Chúc bạn học tốt ~
2x+\(\dfrac{7}{2.3}+\dfrac{13}{3.4}+\dfrac{21}{4.5}+...+\dfrac{91}{9.10}=10\)
\(2x+7\left(\dfrac{1}{2.3}\right)+13\left(\dfrac{1}{3.4}\right)+...+91\left(\dfrac{1}{9.10}\right)=10\)
\(2x+\left(7+13+...+91\right)\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right)=10\)
\(2x+336+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=10\)
\(2x+336+\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=10\)
\(2x+336.\dfrac{2}{5}=10\)
\(2x+\dfrac{672}{5}=10\)
\(2x=10-\dfrac{672}{5}\)
\(2x=-\dfrac{622}{5}\)
\(x=-\dfrac{311}{5}\)
Tick nha 0o0^^^Nhi^^^0o0
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
Ta có: \(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}\)\(=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1980}{19}\)
\(\Leftrightarrow\left(\frac{x-29}{1970}-1\right)+\left(\frac{x-27}{1972}-1\right)+\left(\frac{x-25}{1974}-1\right)+\left(\frac{x-23}{1976}-1\right)+\left(\frac{x-21}{1978}-1\right)+\left(\frac{x-19}{1980}-1\right)\)\(=\left(\frac{x-1970}{29}-1\right)+\left(\frac{x-1972}{27}-1\right)+\left(\frac{x-1974}{25}-1\right)+\left(\frac{x-1976}{23}-1\right)+\left(\frac{x-1978}{21}-1\right)+\left(\frac{x-1980}{19}-1\right)\)
\(\Leftrightarrow\frac{x-1999}{1970}+\frac{x-1999}{1972}+\frac{x-1999}{1974}+\frac{x-1999}{1976}+\frac{x-1999}{1978}+\frac{x-1999}{1980}\)\(=\frac{x-1999}{29}+\frac{x-1999}{27}+\frac{x-1999}{25}+\frac{x-1999}{24}+\frac{x-1999}{21}+\frac{x-1999}{19}\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}\right)\)\(=\left(x-1999\right)\left(\frac{1}{29}+\frac{1}{27}+\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}-\frac{1}{29}-\frac{1}{27}-\frac{1}{25}-\frac{1}{23}-\frac{1}{21}-\frac{1}{19}\right)=0\)\(\Leftrightarrow\) \(x-1999=0\) (Vì ...khác 0)
\(\Leftrightarrow x=1999\)(thỏa mãn)
Vậy \(x=1999\)
a: \(\dfrac{2032-x}{25}+\dfrac{2053-x}{23}+\dfrac{2070-x}{21}+\dfrac{2083-x}{19}-10=0\)
\(\Leftrightarrow\left(\dfrac{2032-x}{25}-1\right)+\left(\dfrac{2053-x}{23}-2\right)+\left(\dfrac{2070-x}{21}-3\right)+\left(\dfrac{2083-x}{19}-4\right)=0\)
=>2007-x=0
hay x=2007
b: \(\Leftrightarrow x+\left(1+1+1+1+1+1+1\right)+\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)=0\)
\(\Leftrightarrow x+7+\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=0\)
=>x+7+1/3-1/10=0
hay x=-217/30