K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

\(a,x\left(x+5\right)-\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow x^2+5x-x^2-x+6=0\Leftrightarrow4x=-6\\ \Leftrightarrow x=-\dfrac{3}{2}\)

\(b,2x^3-18x=0\\ \Leftrightarrow2x\left(x^2-9\right)=0\\ \Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

a: Ta có: \(x\left(x+5\right)-\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow x^2+5x-x^2-3x+2x+6=0\)

\(\Leftrightarrow7x=-6\)

hay \(x=-\dfrac{6}{7}\)

b: Ta có: \(2x^3-18x=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

a: Ta có: \(2x^3-18x=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b: Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)

\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)

\(\Leftrightarrow-13x=13\)

hay x=-1

c: Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x^2\)

\(\Leftrightarrow3x=12\)

hay x=4

4 tháng 9 2021

a) 2x3-18x=0

⇔ 2x(x2-9)=0

⇔ 2x(x-3)(x+3)=0

⇔ \(\left\{{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b)(3x-1)(2x+1)-6x(x+2)=11

 

⇔ 6x2+x-1-6x2-12x=11

⇔ -11x=12

\(\Leftrightarrow x=-\dfrac{12}{11}\)

c) (x-1)3-(x+2).(x2-2x+4)=3.(1-x2)

⇔ x3-3x2+3x-1-x3-8-3+3x2=0

⇔ 3x=12

⇔   x=4

24 tháng 12 2021

a,(2x-5^2)-4x(x-3)=0

=> 2x-25-4x2+12x=0

=>-4x2+14x-25=0

đề bài ý a sai nha

b, 6x2-7x=0

=>x(6x-7)=0

=>x=0 và 6x-7=0

=>x=0 và x=7/6

vậy x=0 và x=7/6

22 tháng 9 2021

\(\left|x-3\right|+\left|x-\dfrac{1}{2}\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)( vô lý)

Vậy \(S=\varnothing\)

b: \(\left|x-3\right|+\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

1 tháng 11 2021

a) \(\Rightarrow\left(2x-3\right)^2=49\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c) \(\Rightarrow x\left(x-5\right)+2\left(x-5\right)=0\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

1 tháng 11 2021

a, ⇒ (2x - 3)2 = 49

    ⇒  (2x - 3)2 = \(\left(\pm7\right)^2\)

    ⇒ \(\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b, ⇒ 2x.(x - 5) + 7.(x - 5) = 0

    ⇒ (x - 5).(2x + 7)  = 0

    ⇒ \(\left[{}\begin{matrix}x-5=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\2x=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c, ⇒ x2 - 5x + 2x - 10 = 0

    ⇒ (x2 - 5x) + (2x - 10) = 0

    ⇒ x.(x - 5) +2.(x - 5)    = 0

    ⇒ (x - 5).(x + 2)=0

    \(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

6 tháng 11 2021

\(a,\Leftrightarrow\left(x+3\right)\left(x+3-x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow x=0\left(x^2+4>0\right)\)

6 tháng 11 2021

 

\(a,x^2+2.x.3+3^2-\left(x^2-3^2\right)=0\)

\(x^2+6x+9-x^2+9=0\)

\(6x+18=0\)

\(6x=-18\)

\(x=-3\)

Vậy x=-3

\(b,5x^3+20x=0\)

\(5x\left(x^2+4\right)=0\)

\(Th1:5x=0=>x=0\)

\(Th2:x^2+4=0\)

\(x^2=-4\)(vô lý)

Vậy x=0

22 tháng 10 2021

\(\left(2x-3\right)^2=7^2\)

\(2x-3=7\)

\(2x=10\)

\(x=5\)

Vậy x=5

22 tháng 10 2021

a: \(\left(2x-3\right)^2-49=0\)

\(\Leftrightarrow\left(2x+4\right)\left(2x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

27 tháng 12 2020

a ,\(4x^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(2x-x+3\right)\left(2x+x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\3x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

Vậy 

b,\(x^2-4+\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ...