BT1: Tìm x, biết:
1) \(x+\dfrac{1}{4}=\dfrac{3}{5}-\left(-\dfrac{1}{3}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\dfrac{1}{2}x-\dfrac{1}{3}\right)^2+\dfrac{1}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow\left(\dfrac{1}{2}x-\dfrac{1}{3}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{1}{2}\\\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
\(-\dfrac{2}{5}+\dfrac{5}{3}\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=-\dfrac{7}{6}\)
\(\Rightarrow\dfrac{5}{3}\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=-\dfrac{23}{30}\)
\(\Rightarrow\dfrac{3}{2}-\dfrac{4}{15}x=-\dfrac{23}{50}\)
\(\Rightarrow\dfrac{4}{15}x=\dfrac{49}{25}\Rightarrow x=\dfrac{147}{20}\)
Chúc bạn học tốt!!!
Giải:
\(\dfrac{1}{2}.\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2-\dfrac{1}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow\dfrac{1}{2}.\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=-\dfrac{3}{40}+\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{2}.\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{8}\)
\(\Leftrightarrow\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{8}:\dfrac{1}{2}\)
\(\Leftrightarrow\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{5}=\dfrac{1}{2}\\\dfrac{1}{3}x-\dfrac{1}{5}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{3}x=\dfrac{7}{10}\\\dfrac{1}{3}x=-\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{21}{10}\\x=-\dfrac{9}{10}\end{matrix}\right.\)
Vậy ...
Chúc bạn học tốt!
\(\dfrac{1}{2}.\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2-\dfrac{1}{5}=-\dfrac{3}{40}\\ \dfrac{1}{2}\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=-\dfrac{3}{40}+\dfrac{1}{5}\\ \dfrac{1}{2}\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{8}\\ \left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{8}:\dfrac{1}{2}\\\left(\dfrac{1}{3}x-\dfrac{1}{5}\right)^2=\dfrac{1}{4}\\ \left(\dfrac{1}{3}x-\dfrac{1}{5}\right)=\left(\pm\dfrac{1}{2}\right)^2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{5}=\dfrac{1}{2}\\\dfrac{1}{3}x-\dfrac{1}{5}=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x=\dfrac{7}{10}\\\dfrac{1}{3}x=\dfrac{3}{10}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{21}{10}\\x=\dfrac{9}{10}\end{matrix}\right. \)
Vậy \(x=\dfrac{21}{10}\) hoặc \(x=\dfrac{9}{10}\)
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
1/2+1/3<x<=1+1/2+1/5
=>5/6<x<=1+7/10
=>5/6<x<17/10
mà x là số nguyên
nên x=1
a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3
=>x=-1/3+3/4=-4/12+9/12=5/12
b: =>x(1/2-5/6)=7/2
=>-1/3x=7/2
hay x=-21/2
c: (4-x)(3x+5)=0
=>4-x=0 hoặc 3x+5=0
=>x=4 hoặc x=-5/3
d: x/16=50/32
=>x/16=25/16
hay x=25
e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4
=>2x=-7/4+3=5/4
hay x=5/8
x + \(\dfrac{1}{4}\)= \(\dfrac{3}{5}\)- \(\left(-\dfrac{1}{3}\right)\)
=> x +\(\dfrac{1}{4}\)= \(\dfrac{14}{15}\)
=> x = \(\dfrac{14}{15}\) - \(\dfrac{1}{4}\)
=> x = \(\dfrac{41}{60}\)
Chúc bạn học tốt !