chung minh rang 1/2 +1/3 +1/4+....+1/63<5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi k, n Є N+, n ≥ 2 có 1 / (k + 1) + 1 / (k + 2) + ... + 1 / (k + n) < n / (k + 1)
=>
1 = 1
1 / 2 + 1 / 3 < 2 / 2 = 1
1 / 4 + 1 / 5 + 1 / 6 + 1 / 7 < 4 / 4 = 1
1 / 8 + ... + 15 < 8 / 8 = 1
1 / 16 + ... + 1 / 31 < 16 / 16 = 1
1 / 32 + ... + 1 / 63 < 32 / 32 = 1
Cộng vế theo vế có 1 + 1 / 2 + ... + 1 / 63 < 6
1+1/2+1/3+1/4+...+1/63=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+...+1/15)+(1/16+1/17+..,+1/31)+(1/32+1/33+...+1/63)
<1+(1/2+1/2)+(1/4+1/4+1/4+1/4)+(1/8+1/8+...+1/8)+(1/16+1/16+...+1/16)+(1/32+1/32+...+1/32)
<1+1+1+1+1+1=6
Ta có:\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..........+\frac{1}{64}\)
=\(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+.........+\left(\frac{1}{33}+......+\frac{1}{64}\right)\)
\(>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+...+\left(\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}\right)\)
=\(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
=4
Vậy \(1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{64}>4\)
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)
(*)Ta có:
1/13<1/12
1/14<1/12
1/15<1/12
=>1/13+1/14+1/15<1/12
(*)Ta lại có:
1/61<1/60
1/62<1/60
1/63<1/60
=>1/61+1/62+1/63<1/60
=>S<1/5+1/12.3+1/60.3
S<1/5+1/4+1/20
S<1/2
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)
(*)Ta có:
1/13<1/12
1/14<1/12
1/15<1/12
=>1/13+1/14+1/15<1/12
(*)Ta lại có:
1/61<1/60
1/62<1/60
1/63<1/60
=>1/61+1/62+1/63<1/60
=>S<1/5+1/12.3+1/60.3
S<1/5+1/4+1/20
S<1/2
Đặt \(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}\)
Ta thấy:
\(\dfrac{1}{2!}=\dfrac{1}{1.2};\dfrac{1}{3!}=\dfrac{1}{1.2.3}< \dfrac{1}{2.3};...;\dfrac{1}{100!}=\dfrac{1}{1.2...100}< \dfrac{1}{99.100}\)
Cộng vế với vế ta được:
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)
Vậy \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\) (Đpcm)
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+\dfrac{1}{100!}\)
\(=\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+\left(\dfrac{1}{3!}-\dfrac{1}{4!}\right)+...+\left(\dfrac{1}{99!}-\dfrac{1}{100!}\right)\)
\(=1-\dfrac{1}{100!}< 1\)
Đặt \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{31}+\dfrac{1}{31}+\dfrac{1}{31}+...+\dfrac{1}{31}\)(có 62 số hạng \(\dfrac{1}{31}\))
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{31}\times62\)
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>2\)
\(Vậy\) \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>2\left(đpcm\right)\)
ta có :1+(1/2+1/2+........+1/32)
1+(1/2*3*4*5......*32)
=>1/2*3*4*....*32<1
vậy 1+1/2+1/3+1/4+........+1/32<3