(x+1)(x+2)(x+3)(x+4)+y^4 là số chình phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt: \(x+13=a^2,x-2=b^2\)
\(\Rightarrow a^2-b^2=15\Leftrightarrow\left(a-b\right)\left(a+b\right)=15\Rightarrow\orbr{\begin{cases}a-b=1,a+b=15\\a-b=3,a+b=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=8,b=7\Rightarrow x=51\\a=4,b=1\Rightarrow x=3\end{cases}}\)
b) Đặt \(x^2+6x+16=n^2\Leftrightarrow n^2-\left(x+3\right)^2=7\Leftrightarrow\left(n-x-3\right)\left(n+x+3\right)=7\)
\(\Leftrightarrow\hept{\begin{cases}n-x-3=1\\n+x+3=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\n=4\end{cases}\Rightarrow x=0}\)
c) \(x^2+3x+9\)là số chính phương \(\Leftrightarrow4\left(x^2+3x+9\right)\)là số chính phương
Đặt \(4\left(x^2+3x+9\right)=m^2\Leftrightarrow m^2-\left(2x+3\right)=27\Leftrightarrow\left(m-2x-3\right)\left(m+2x+3\right)=27\)
\(\Rightarrow\orbr{\begin{cases}m-2x-3=1,m+2x+3=27\\m-2x-3=3,m+2x+3=9\end{cases}\Leftrightarrow\orbr{\begin{cases}m=14,x=5\\m=6,x=0\end{cases}}}\)
d) Đặt \(x+26=k^3,x-11=l^3\)
\(\Rightarrow k^3-l^3=37\Leftrightarrow\left(k-l\right)\left(k^2+l^2+kl\right)=37\Rightarrow\orbr{\begin{cases}k-l=1\\k^2+l^2+kl=37\end{cases}}\)
\(\Rightarrow k=4,l=3\Rightarrow x=38\)
B3 : t chỉ m r á :3
B4 :
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
= 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
= 4 ( x2 + xy + xz ) ( x2 + xy + xz + yz ) + y2x2
Đặt a = x2 + xy + xz và b= yz , ta có :
⇒ C = 4a( a + b ) + b2
= b2 + 4ab + 4a2
= ( b + a )2
⇒ C là số chính phương
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Số chính phương hay còn gọi là số hình vuông là số tự nhiên có căn bậc 2 là một số tự nhiên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số tự nhiên khác.
e: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{3}{y}=3\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=-2\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\\dfrac{1}{x}=1+\dfrac{2}{7}=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\x=\dfrac{7}{9}\end{matrix}\right.\)