1, Tính tổng sau
S = 22015- 22014 - 22013- ........ - 2 -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)
ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)
=> 2S + S = -22015 + 1
=> 3S = -22015 + 1
=> 3S - 1 = -22015
=> 1 - 3S = 22015
( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)
Bài 1:
Ta có: \(3n+1⋮n-1\)
\(\Leftrightarrow3n-3+4⋮n-1\)
mà \(3n-3⋮n-1\)
nên \(4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)(tm)
Vậy: \(n\in\left\{2;0;3;-1;5;-3\right\}\)
Ta có :
\(S=2^{2015}-2^{2014}-..............-2-1\)
\(\Leftrightarrow S=2^{2015}-\left(2^{2014}+2^{2013}+...........+2+1\right)\)
Đặt :
\(A=2^{2014}+2^{2013}+.........+2+1\)
\(\Leftrightarrow2A=2^{2015}+2^{2014}+.............+2\)
\(\Leftrightarrow2A-A=\left(2^{2015}+2^{2014}+..........+2\right)-\left(2^{2014}+2^{2013}+.........+1\right)\)
\(\Leftrightarrow A=2^{2015}-1\)
\(\Leftrightarrow S=2^{2015}-\left(2^{2015}+1\right)\)
\(\Leftrightarrow S=2^{2015}-2^{2015}+1\)
\(\Leftrightarrow S=0+1=1\)
\(S=2^{2015}-2^{2014}-2^{2013}-...2-1\)
\(2S=2^{2015}-2^{2014}-2^{2013}-...-2\)
\(2S-S=2^{2015}-2^{2014}-2^{2014}-2^{2013}+2^{2013}-...-2+2+1\)
\(S=2^{2015}-2.2^{2014}+1\)
\(S=2^{2015}-2^{2015}+1=1\)
Tham khảo, chúc bạn học giỏi! Haizzz