K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Ta có :

\(S=2^{2015}-2^{2014}-..............-2-1\)

\(\Leftrightarrow S=2^{2015}-\left(2^{2014}+2^{2013}+...........+2+1\right)\)

Đặt :

\(A=2^{2014}+2^{2013}+.........+2+1\)

\(\Leftrightarrow2A=2^{2015}+2^{2014}+.............+2\)

\(\Leftrightarrow2A-A=\left(2^{2015}+2^{2014}+..........+2\right)-\left(2^{2014}+2^{2013}+.........+1\right)\)

\(\Leftrightarrow A=2^{2015}-1\)

\(\Leftrightarrow S=2^{2015}-\left(2^{2015}+1\right)\)

\(\Leftrightarrow S=2^{2015}-2^{2015}+1\)

\(\Leftrightarrow S=0+1=1\)

22 tháng 9 2017

\(S=2^{2015}-2^{2014}-2^{2013}-...2-1\)

\(2S=2^{2015}-2^{2014}-2^{2013}-...-2\)

\(2S-S=2^{2015}-2^{2014}-2^{2014}-2^{2013}+2^{2013}-...-2+2+1\)

\(S=2^{2015}-2.2^{2014}+1\)

\(S=2^{2015}-2^{2015}+1=1\)

Tham khảo, chúc bạn học giỏi! Haizzz

26 tháng 8 2021

\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)

\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)

20 tháng 12 2022

\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)

20 tháng 12 2022

Ủa sao kì z ;-; 

16 tháng 7 2018

ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)

=> 2S + S = -22015 + 1

=> 3S = -22015 + 1

=> 3S - 1 = -22015

=> 1 - 3S = 22015

( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)

Bài 1:

Ta có: \(3n+1⋮n-1\)

\(\Leftrightarrow3n-3+4⋮n-1\)

\(3n-3⋮n-1\)

nên \(4⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(4\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)(tm)

Vậy: \(n\in\left\{2;0;3;-1;5;-3\right\}\)

4 tháng 10 2017

16 tháng 3 2023

Cảm ơn bạn ạ