Cho a/b =c/d .Chứng minh
a. a-b/a+b = c-d/c+d
b.2a + 5b/3a + 4b = 2c - 5d/3c + 4d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\left(=\frac{a}{c}\right)\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)
Vậy...
Gọi a/b=c/d=k nên a=bk;c=dk
=>2a+5b/3a-4b=2bk+5b/3bk-4b=b(2k+5)/b(3k-4)=2k+5/3k-4(1)
=>2c+5d/3c-4d=2dk+5d/3dk-4d=d(2k+5)/d(3k-4)=2k+5/3k-4(2)
Từ (1);(2) =>2a+5b/3a-4b=2c+5d/3c-4d
đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> a=bk, c=dk =>\(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)(1)
=> \(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{2k+5}{3k-4}\) ( 2)
từ (1)( 2)=> \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
câu b c/m tg tự
Ta đặt:\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Khi đó: \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(=\frac{2k+5}{3k-4}\right)\)
Xem ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Lại có :
\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)
\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
Theo đề ta có:
\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
=> \(\dfrac{2a+5b}{3a-4b}-\dfrac{2c+5d}{3c-4d}\)
=> \(\dfrac{a+b}{a-b}-\dfrac{c+d}{c-d}\)(1)
Mà \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\)(2)
=> \(\dfrac{a-b}{c-d}\) và \(\dfrac{a+b}{c+d}\)(3)
Từ (2) và (3) => \(\dfrac{a-b}{c-d}\) = \(\dfrac{a+b}{c+d}\) = \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(\dfrac{a-b}{c-d}\) = \(\dfrac{a+b}{c+d}\)= > \(\dfrac{a-b}{a+b}\) = \(\dfrac{c-d}{c+d}\)
=> \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)= \(\dfrac{a+b}{a-b}-\dfrac{c+d}{c-d}\)(4)
Từ (1) và (4)
=> \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)( đpcm)
a/ Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có :
\(VT=\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\left(1\right)\)
\(VP=\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
b/ Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có :
\(VT=\dfrac{2a-5b}{3a+4b}=\dfrac{2bk-5b}{3bk+4b}=\dfrac{b\left(2k-5\right)}{b\left(3k+4\right)}=\dfrac{2k-5}{3k+4}\left(1\right)\)
\(VP=\dfrac{2c-5d}{3c+4d}=\dfrac{2dk-5d}{3dk+4d}=\dfrac{d\left(2k-5\right)}{d\left(3k+4\right)}=\dfrac{2k-5}{3k+4}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)