K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Đặt\(A=\dfrac{3^6.21^{12}}{175^9.7^3}=\dfrac{3^6.3^{12}.7^{12}}{175^9.7^3}=\dfrac{3^{18}.7^{12}}{\left(5^2\right)^9.7^9.7^3}=\dfrac{3^{18}.7^{12}}{5^{18}.7^{12}}=\dfrac{3^{18}}{5^{18}}=\left(\dfrac{3}{5}\right)^{18}\)

Đặt \(B=\dfrac{3^{10}.6^7.4}{10^9.5^8}=\dfrac{3^{10}.3^7.2^7.2^2}{2^9.5^9.5^8}=\dfrac{3^{17}.2^9}{2^9.5^{17}}=\dfrac{3^{17}}{5^{17}}=\left(\dfrac{3}{5}\right)^{17}\)

\(\left(\dfrac{3}{5}\right)^{18}>\left(\dfrac{3}{5}\right)^{17}\Leftrightarrow A>B\)

\(\Rightarrow\dfrac{3^6.21^{12}}{175^9.7^3}>\dfrac{3^{10}.6^7.4}{10^9.5^8}\)

15 tháng 9 2019

Bài 1 :                                                                        Bài giải

\(\frac{28^{15}\cdot3^{17}}{84^{16}}=\frac{\left(2^2\cdot7\right)^{15}\cdot3^{17}}{\left(2^2\cdot3\cdot7\right)^{16}}=\frac{2^{30}\cdot7^{15}\cdot3^{17}}{2^{32}\cdot3^{16}\cdot7^{16}}=\frac{3}{2^2\cdot7}=\frac{3}{4\cdot7}=\frac{3}{28}\)

Bài 2 :                                                              Bài giải

\(\frac{3^6\cdot21^{12}}{175^9\cdot7^3}=\frac{3^6\cdot\left(3\cdot7\right)^{12}}{\left(5^2\cdot7\right)^9\cdot7^3}=\frac{3^6\cdot3^{12}\cdot7^{12}}{5^{18}\cdot7^9\cdot7^3}=\frac{3^{18}\cdot7^{12}}{5^{18}\cdot7^{12}}=\frac{3^{18}}{5^{18}}\)

\(\frac{3^{10}\cdot6^7\cdot4}{10^9\cdot5^8}=\frac{3^{10}\cdot\left(2\cdot3\right)^7\cdot2^2}{\left(2\cdot5\right)^9\cdot5^8}=\frac{3^{10}\cdot2^7\cdot3^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\frac{3^{17}\cdot2^9}{2^9\cdot5^{17}}=\frac{3^{17}}{5^{17}}\)

Ta có : \(3^{17}\cdot5^{18}=3^{17}\cdot5^{17}\cdot5=\left(3\cdot5\right)^{17}\cdot5=15^{17}\cdot5\)

\(3^{18}\cdot5^{17}=3\cdot3^{17}\cdot5^{17}=3\cdot\left(3\cdot5\right)^{17}=3\cdot15^{17}\)

\(\text{ Vì }5\cdot15^{17}>3\cdot15^{17}\text{ }\Rightarrow\text{ }3^{17}\cdot5^{18}>3^{18}\cdot5^{17}\text{ }\Rightarrow\text{ }\frac{3^{18}}{5^{18}}< \frac{3^{17}}{5^{17}}\)

15 tháng 9 2019

cảm ơn nha

2 tháng 12 2017

Ta có: \(A=\dfrac{3^6.21^{12}}{175^9.7^3}=\dfrac{3^6.3^{12}.7^{12}}{5^{18}.7^9.7^3}=\dfrac{3^{18}.7^{12}}{5^{18}.7^{12}}=\dfrac{3^{18}}{5^{18}}=\left(\dfrac{3}{5}\right)^{18}\)

\(B=\dfrac{3^{10}.6^7.4}{10^9.5^8}=\dfrac{3^{10}.2^7.3^7.2^2}{2^9.5^9.5^8}=\dfrac{3^{17}.2^9}{2^9.5^{17}}=\dfrac{3^{17}}{5^{17}}=\left(\dfrac{3}{5}\right)^{17}\)

\(\left(\dfrac{3}{5}\right)^{18}< \left(\dfrac{3}{5}\right)^{17}\Rightarrow A< B\)

Vậy A < B

22 tháng 8 2016

Đặt: \(A=\frac{3^6.21^{12}}{175^9.7^3}=\frac{3^{18}.7^{12}}{7^{12}.25^9}=\frac{3^{18}}{5^{18}}=\left(\frac{3}{5}\right)^{18}\)

\(B=\frac{3^{10}.6^7.4}{10^9.5^8}=\frac{3^{10}.2^7.3^7.2^2}{2^9.5^9.5^8}=\frac{3^{17}.2^9}{2^9.5^{17}}=\left(\frac{3}{5}\right)^{17}\)

Vì: \(\left(\frac{3}{5}\right)^{18}< \left(\frac{3}{5}\right)^{17}\Rightarrow A< B\)

22 tháng 8 2016

cảm ơn bạn nhiều nha!

27 tháng 11 2017

4) \(3^{n+2}+3^n=270\)

\(\Rightarrow3^n.3^2+3^n=270\)

\(\Rightarrow3^n.\left(3^2+1\right)=270\)

\(\Rightarrow3^n.\left(9+1\right)=270\)

\(\Rightarrow3^n.10=270\)

\(\Rightarrow3^n=270:10\)

\(\Rightarrow3^n=27\)

\(\Rightarrow3^n=3^3\)

\(\Rightarrow n=3\)

Vậy \(n=3\)

Ta có: \(\dfrac{10x-5}{18}+\dfrac{x+3}{12}\ge\dfrac{7x+3}{6}-\dfrac{12-x}{9}\)

\(\Leftrightarrow\dfrac{2\left(10x-5\right)}{36}+\dfrac{3\left(x+3\right)}{36}\ge\dfrac{6\left(7x+3\right)}{36}-\dfrac{4\left(12-x\right)}{36}\)

\(\Leftrightarrow20x-10+3x+9\ge43x+9-48+4x\)

\(\Leftrightarrow23x-1-47x+39\ge0\)

\(\Leftrightarrow-24x+38\ge0\)

\(\Leftrightarrow-24x\ge-38\)

hay \(x\le\dfrac{19}{12}\)

Vậy: S={x|\(x\le\dfrac{19}{12}\)}

a: \(=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^9\cdot7^3}=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^{12}}\)

b: \(=\dfrac{3^{10}\cdot3^7\cdot2^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\dfrac{3^{17}}{5^{17}}\)

a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)

\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

hay x<=4

b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)

=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)

=>12x+2+3x+9>=30x+18+48-20x

=>15x+11>=10x+66

=>5x>=55

hay x>=11