1) chung minh rang: a) n.(n +8) .(n+13) chia het cho 3
b)neu 10a +b chia hetcho13 thi a +4b chia het cho 13 (voi a,bla cac so tu nhien)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)
Vậy \(n\in\left\{0;4\right\}\)
b) Ta có:
\(15⋮n+1\)
\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)
Vậy \(n\in\left\{0;2;4;14\right\}\)
c) Ta có:
\(n+3⋮n+1\)
\(\Rightarrow\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)
Vậy \(n\in\left\{0;1\right\}\)
d) Ta có:
\(4n+3⋮2n+1\)
\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)
\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow2n+1=1\)
\(\Rightarrow n=0\)
Vậy \(n=0\)
Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2
Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2
suy ra 13 giao thừa - 11 giao thừa chia hết cho 2
xin các bạn k cho mình nhé
a-2:3 => a-2+3:3 =>a+1:3
a-4:4 => a-4+5:5 => a+1:5
a-6:7 => a-6+7:7 => a+1:7
Vậy a+1 là bọi của 3,5,7
a nhỏ nhất nên a+1 nhỏ nhất
a+1 là BCNN(3;5;7)=105
a=104
2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4
Ta có cd chia hết cho 4 nên abcd chia hết cho 4
Câu b tương tự
Xét n chẵn thì n(n+13) chia hết cho 2
Xét n lẻ thì n+13 chẵn suy ra n(n+13) chia hết cho 2
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
bạn xét n=2k;2k+1;2k+2(k thuộc N) rồi tự khắc sẽ ra