K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

BĐT Nesbitt cho 4 biến, bạn tham khảo google nhiều lắm :3

12 tháng 9 2017

Mk viết nhầm tất cả bỏ căn nhá

NV
14 tháng 4 2021

\(\Leftrightarrow\dfrac{a}{\sqrt{4b^2+bc+4c^2}}+\dfrac{b}{\sqrt{4c^2+ca+4a^2}}+\dfrac{c}{\sqrt{4a^2+ab+4b^2}}\ge1\)

Ta có:

\(\sum\left(\dfrac{a}{\sqrt{4b^2+bc+4c^2}}\right)^2\sum a\left(4b^2+bc+4c^2\right)\ge\left(a+b+c\right)^3\)

Nên ta chỉ cần chứng minh:

\(\dfrac{\left(a+b+c\right)^3}{a\left(4b^2+bc+4c^2\right)+b\left(4c^2+ac+4a^2\right)+c\left(4a^2+ab+4b^2\right)}\ge1\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^3}{4a\left(b^2+c^2\right)+4b\left(c^2+a^2\right)+4c\left(a^2+b^2\right)+3abc}\ge1\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) (đúng theo Schur bậc 3)

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Lời giải:

Áp dụng BĐT AM-GM dạng ngược dấu (\(ab\leq (\frac{a+b}{2})^2\) )ta có:

\(\frac{b+c+d}{a}.1\leq \left(\frac{\frac{b+c+d}{a}+1}{2}\right)^2=\frac{(a+b+c+d)^2}{4a^2}\)

\(\Rightarrow \frac{a}{b+c+d}\geq \frac{4a^2}{(a+b+c+d)^2}\)\(\Rightarrow \sqrt{\frac{a}{b+c+d}}\geq \frac{2a}{a+b+c+d}\)

Hoàn toàn tương tự:

\(\left\{\begin{matrix} \sqrt{\frac{b}{c+d+a}}\geq \frac{2b}{a+b+c+d}\\ \sqrt{\frac{c}{d+a+b}}\geq \frac{2c}{a+b+c+d}\\ \sqrt{\frac{d}{a+b+c}}\geq \frac{2d}{a+b+c+d}\end{matrix}\right.\)

Cộng theo vế: \(\Rightarrow \text{VT}\geq \frac{2a+2b+2c+2d}{a+b+c+d}=2\)

Dấu bằng xảy ra khi \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=1\)

\(\Leftrightarrow a+b+c+d=0\) (VL do $a,b,c,d$ dương)

Do đó dấu bằng không xảy ra .

Hay \(\text{VT}>2\) (đpcm)

17 tháng 5 2018
https://i.imgur.com/8TIBI9D.jpg
8 tháng 12 2017

Mình làm được rồi, cảm ơn các bạn vui

26 tháng 4 2022

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

26 tháng 4 2022

-Thôi, mình chịu rồi. Mình dùng tất cả các BĐT như Caushy, Schwarz, Caushy 3 số... nhưng không ra.

16 tháng 2 2022

Bất đẳng thức cần chứng minh tương đương với:

\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\)

Ta áp dụng bất đẳng thức Cô si dạng \(2\sqrt{xy}\le x+y\) cho các căn thức ở mẫu, khi đó ta được:

\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\ge\) với biểu thức

\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\)

Khi đó ta cần chứng minh: 

\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\ge\dfrac{3}{4}\)

Đặt: \(\left\{{}\begin{matrix}x=2a+3b+3c\\y=3a+2b+3c\\z=3a+3b+2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=\dfrac{1}{4}\left(3y+3z-5x\right)\\2b=\dfrac{1}{4}\left(3z+3x-5y\right)\\2c=\dfrac{1}{4}\left(3x+3y-5z\right)\end{matrix}\right.\)

Khi đó đẳng thức trên được viết lại thành:

\(\dfrac{3y+3z-5x}{4x}+\dfrac{3z+3x-5y}{4y}+\dfrac{3x+3y-5z}{4z}\ge\dfrac{3}{4}\)

Hay: \(3\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\right)-15\ge3\)

Bất đẳng thức cuối cùng luôn đúng theo bất đẳng thức Cô si.

Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

16 tháng 2 2022

Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\)

Khi đó bđt đã tro chở thành:

\(\dfrac{yz}{x^2+3yz}+\dfrac{zx}{y^2+3zx}+\dfrac{xy}{z^2+3xy}\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}-\dfrac{yz}{x^2+3yz}+\dfrac{1}{3}-\dfrac{zx}{y^2+3zx}+\dfrac{1}{3}-\dfrac{xy}{z^2+3xy}\ge1-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{x^2}{x^2+3yz}+\dfrac{y^2}{y^2+3zx}+\dfrac{z^2}{z^2+3xy}\ge\dfrac{3}{4}\) (đpcm)

 

16 tháng 3 2017

có thiếu ĐK nào k bạn ?

áp dụng BĐT cauchy :

\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)

việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))

dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)