Cho tam giác ABC có 3 góc đề nhọn và góc BAC=45 độ. Hai đường cao BD, CE cắt nhau tại H. Gọi I là trung điểm của DE ,kẻ EM vương góc với AC ( M thuộc AC), kẻ DN vuông góc với AB ( N thuộc AB). Gọi O là trung điểm của EM và DN
a. tứ giác EHDO là hình gì ?
b, Chứng minh HC=2NO
c, Chứng minh đường thẳng HI đi qua trọng tâm tam giác ABC
OD // EH (cùng _I_ AB)
OE // HD (cùng _I_ AC)
=> OEHD là h.b.h
- - -
\(\Delta EAC\) vuông tại E có \(\widehat{A}=45^0\)
\(\Rightarrow\widehat{DCH}=45^0\)
mà \(\Delta DHC\) vuông tại D
=> \(\Delta DHC\) vuông cân tại D
=> \(HC=\sqrt{2}HD=\sqrt{2}OE\)
và \(\widehat{DHC}=45^0\)
\(\Rightarrow\widehat{NDB}=45^0\) (so le trong, EC // ND)
\(\Rightarrow\widehat{NOE}=45^0\) (đồng vị, EM // BD)
mà \(\Delta NOE\) vuông tại N
=> \(\Delta NOE\) vuông cân
=> \(OE=\sqrt{2}ON\)
=> HC = 2ON
- - -
\(\Delta DAB\) vuông cân taị D có DN là đ.c.
=> N là t.đ. của AB
=> CN là đ.t.tn. của \(\Delta ABC\)
OEHD là h.b.h. có I là t.đ. của ED
=> I là t.đ. của OH
=> H, O, I thẳng hàng
Gọi K là g.đ. của CN và OH.
\(\Rightarrow\dfrac{KC}{KN}=\dfrac{HC}{ON}=\dfrac{2ON}{ON}=\dfrac{2}{1}\)
\(\Rightarrow\dfrac{KC}{NC}=\dfrac{KC}{KN+KC}=\dfrac{2}{1+2}=\dfrac{2}{3}\)
=> HI đi qua trọng tâm của \(\Delta ABC\)
đ.t.tn là g