Cho hình bình hành ABCD (AC > BD). Vẽ CE vuông góc với AB và CF vuông góc với AD. Chứng minh AB.AE + AD.AF = AC^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh
Tương tự câu a ta chứng minh được
Þ AD.AF =AK.AC (2)
Từ (1) ta có AB.AE = AC.AH (3)
Lấy (3) + (2) ta được AD.AF + AB.AE = AC2 (ĐPCM)
Câu hỏi của Nguyễn Đình Kim Thanh - Toán lớp 8 - Học toán với OnlineMath
Em xem link bài nhé!
a. hai tg ABG và tg ACE vuông tại G và E có góc GAB chung nên đồng dạng(gg)
b. Vì tg AEC và ABG đồng dạng --> AB/AC = AG/AE -> AB.AE = AC.AG(1)
Vì hai tg vuông AFC và CGB có góc CAF = góc BCG (slt) --> tg AFC và tg CGB đồng dạng --> AF/CG = AC/BC --> AF.BC = AC.CG thay BC = AD --> AF.AD = AC.CG (2).
Cộng (1) và (2) vế theo vế --> AB.AE + AD.AF = AC.AG + AC.CG = AC(AG+GC) = AC.AC = AC^2
Vậy AB.AE + AD.AF = AC^2.
Kẻ DH và BK cùng vuông góc với AC. Thì tam giác vuông ADH = tam giác vuông CBK( AD = BC ; góc DAH = góc BCK so le trong) suy ra AH = CK.
Ta có tam giác vuông ADH đồng dạng với tam giác vuông ACF vì có góc A chung suy ra AH/AF = AD/AC suy ra AD.AF = AH.AC = CK.AC (1)
Cm tương tự ta cũng có : tam giác vuông AEC đồng dạng với tam giác vuông AKB cho ta AB.AE = AK.AC (2)
Cộng từng vế (1) và (2) suy ra đpcm
Dựng BG ⊥ AC.
Xét ∆ BGA và ∆ CEA, ta có:
ˆBGA=ˆCEA=90∘BGA^=CEA^=90∘
ˆAA^ chung
Suy ra: ∆ BGA đồng dạng ∆ CEA (g.g)
Suy ra: ABAC=AGAEABAC=AGAE
Suy ra: AB.AE = AC.AG (1)
Xét ∆ BGC và ∆ CFA, ta có:
ˆBGC=ˆCFA=90∘;BGC^=CFA^=90∘
ˆBCG=ˆCAF;BCG^=CAF^ (so le trong vì AD // BC)
Suy ra: ∆ BGC đồng dạng ∆ CFA (g.g)
Suy ra: AFCG=ACBC⇒BC.AF=AC.CGAFCG=ACBC⇒BC.AF=AC.CG
Mà BC = AD (tính chất hình bình hành )
Suy ra: AD.AF = AC.CG (2)
Cộng từng vế của đẳng thức (1) và (2) ta có:
AB.AE + AD.AF = AC.AG + AC.CG
⇒AB.AE+AD.AF=AC(AG+CG)⇒AB.AE+AD.AF=AC(AG+CG)
Mà AG+CG=ACAG+CG=AC nên AB.AE+AD.AF=AC2
bạn vào link này nhé có người giải bài này rồi:
http://olm.vn/hoi-dap/question/34544.html
a: Xet ΔAHB vuông tại H và ΔAEC vuông tại E có
góc EAC chung
=>ΔAHB đồng dạng với ΔAEC
=>AH/AE=AB/AC
=>AH*AC=AE*AB
b: Xét ΔHCB vuông tại H và ΔFAC vuông tại F có
góc HCB=góc FAC
=>ΔHCB đồng dạng với ΔFAC
=>CH/AF=CB/CA
=>CH*CA=CB*AF=AD*AF
=>AB*AE+AD*AF=AC^2