K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

`M=(5^2018+1)/(5^2017+1)`

`1/5M=(5^2017+1/5)/(5^2017+1)`

`1/5M=1-(4/5)/(5^2017+1)`

Tương tự:

`1/5N=1-(4/5)/(5^2016+1)`

`5^2017+1>5^2016+1`

`=>(4/5)/(5^2017+1)<(4/5)/(5^2016+1)`

`=>1-(4/5)/(5^2017+1)>1-(4/5)/(5^2016+1)`

`=>1/5M>1/5N=>M>N`

\(M=\dfrac{5^{2018}+1}{5^{2017}+1}=5-\dfrac{4}{5^{2017}+1}\)

\(N=\dfrac{5^{2017}+1}{5^{2016}+1}=5-\dfrac{4}{5^{2016}+1}\)

mà \(-\dfrac{4}{5^{2017}+1}>-\dfrac{4}{5^{2016}+1}\)

nên M>N

30 tháng 4 2017

A > B

Đúng 100%

Đúng 100%

Đúng 100%

30 tháng 4 2017

Bạn giải lần lượt hộ mình với

19 tháng 7 2018

\(A=\frac{5^{2016}+1}{5^{2017}+1}\)

\(\Rightarrow5A=\frac{5^{2017}+5}{5^{2017}+1}=1+\frac{4}{5^{2017}+1}\)

\(B=\frac{5^{2017}+1}{5^{2018}+1}\)

\(\Rightarrow5B=\frac{5^{2018}+5}{5^{2018}+1}=1+\frac{4}{5^{2018}+1}\)

Do \(\frac{4}{5^{2018}+1}< \frac{4}{5^{2017}+1}\)

\(\Rightarrow5A>5B\Leftrightarrow A>B\)

22 tháng 8 2018

1: so sánh 2016/2017+2017/2018 

vì 2016/2017 > 1/2017 >1/2018 =

> 2016/2017+2017/2018 >1/2018+2017/2018=1

vậy .....

22 tháng 8 2018

bạn làm đúng rồi nhưng mình cần 2 bài

19 tháng 3 2016

Ta có:

a/b< a+1/b+1

=> A<B

NV
25 tháng 12 2020

\(S=\dfrac{1}{2018!\left(2019-2018\right)!}+\dfrac{1}{2016!\left(2019-2016\right)!}+...+\dfrac{1}{2!\left(2019-2\right)!}+\dfrac{1}{0!\left(2019-0!\right)}\)

\(\Rightarrow2019!.S=\dfrac{2019!}{2018!\left(2019-2018\right)!}+\dfrac{2019!}{2016!\left(2019-2016\right)!}+...+\dfrac{2019!}{2!\left(2019-2\right)!}+\dfrac{2019!}{0!\left(2019-0\right)!}\)

\(=C_{2019}^{2018}+C_{2019}^{2016}+...+C_{2019}^2+C_{2019}^0\)

\(=\dfrac{1}{2}\left(C_{2019}^0+C_{2019}^1+...+C_{2019}^{2018}+C_{2019}^{2019}\right)\)

\(=\dfrac{1}{2}.2^{2019}=2^{2018}\)

\(\Rightarrow S=\dfrac{2^{2018}}{2019!}\)