1/ Cho biểu thức
\(P=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)với x>0, x\(\ne\)1
a) CMR: P=\(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b) Tìm các giá trị của x để 2P=\(2\sqrt{5}+5\)
2/ Thu gọn biểu thức sau:
A= \(\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
B= \(\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
giúp mình với ạ
Câu 1:
a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)
hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)