F=49/2.9+49/9.16+49/16.23+...+49/65.72
G=3/1.3+3/3.5+3/5.7+..+3/47.49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{49}{2\cdot9}+\dfrac{49}{9\cdot16}+\dfrac{49}{16\cdot23}+...+\dfrac{49}{65\cdot72}\)
\(B=\dfrac{49}{7}\cdot\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{23}+...+\dfrac{1}{65}-\dfrac{1}{72}\right)\)
\(B=7\cdot\left(\dfrac{1}{2}-\dfrac{1}{72}\right)\)
\(B=7\cdot\left(\dfrac{36}{72}-\dfrac{1}{72}\right)\)
\(B=7\cdot\dfrac{35}{72}\)
\(B=\dfrac{\left(7\cdot35\right)}{72}\)
\(B=\dfrac{245}{72}\)
\(\dfrac{B}{7}=\dfrac{7}{2\cdot9}+\dfrac{7}{9\cdot16}+\dfrac{7}{16\cdot23}+...+\dfrac{49}{65\cdot72}\\ \dfrac{B}{7}=\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{23}+...+\dfrac{1}{65}-\dfrac{1}{72}\\ \dfrac{B}{7}=\dfrac{1}{2}-\dfrac{1}{72}\\ \dfrac{B}{7}=\dfrac{35}{72}\\ B=\dfrac{35}{72}\times7\\ B=\dfrac{245}{72} \)
Đề là ntn:
\(A=49\left(\dfrac{1}{2.9}+\dfrac{1}{9.16}+\dfrac{1}{16.23}+...+\dfrac{1}{65.72}\right):\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=7\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{23}+...+\dfrac{1}{65}-\dfrac{1}{72}\right):\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=7\left(\dfrac{1}{2}-\dfrac{1}{72}\right):\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=7.\dfrac{35}{72}:\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=\dfrac{245}{72}:\dfrac{1}{3}-\dfrac{7}{36}\)
\(A=\dfrac{735}{72}-\dfrac{7}{36}=\dfrac{735}{72}-\dfrac{14}{36}=\dfrac{721}{36}\)
Đề là Thực hiện biến đổi toán học và kết hợp với máy tính . Tính số nghịch đảo của biểu thức ?
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)
\(\Rightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}=2.\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)
\(\Rightarrow1-\frac{1}{2x+1}=\frac{98}{99}\)
\(\Rightarrow\frac{2x}{2x+1}=\frac{98}{99}\)
=> 2x = 98
=> x = 98 : 2 = 49
\(\frac{x}{1.3}+\frac{x}{3.5}+\frac{x}{5.7}+....+\frac{x}{97.99}=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\frac{98}{99}=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}=\frac{49}{99}\div\frac{98}{99}\)
\(\Leftrightarrow\frac{x}{2}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}\times2=1\)
\(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+...+\frac{x}{97\cdot99}=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\right]=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=\frac{97}{99}\)
\(\Rightarrow\frac{x}{2}\left[1-\frac{1}{99}\right]=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\cdot\frac{98}{99}=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}=\frac{1}{2}\)
=> x = 1/2 * 2 = 1
nhân 2 vào 2 vế rồi bạn biến đổi ra( mình lười làm ắ)
tìm được x=50 ắ
\(F=\dfrac{49}{2.9}+\dfrac{49}{9.16}+............+\dfrac{49}{65.72}\)
\(\Leftrightarrow F=\dfrac{7^2}{2.9}+\dfrac{7^2}{9.16}+............+\dfrac{7^2}{65.72}\)
\(\Leftrightarrow F=7\left(\dfrac{7}{2.9}+\dfrac{7}{9.16}+.............+\dfrac{7}{65.72}\right)\)
\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...........+\dfrac{1}{65}-\dfrac{1}{75}\right)\)
\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{72}\right)\)
\(\Leftrightarrow F=7.\dfrac{35}{72}=\dfrac{245}{72}\)
\(G=\dfrac{3}{1.3}+\dfrac{3}{3.5}+...........+\dfrac{3}{47.49}\)
\(\Leftrightarrow G=\dfrac{3.2}{1.3.2}+\dfrac{3.2}{3.5.2}+........+\dfrac{3.2}{47.49}\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+..........+\dfrac{2}{47.49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}.\dfrac{48}{49}=\dfrac{72}{49}\)