K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2

Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2

Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2

Bài 4 bạn ghi thiếu đề

16 tháng 8 2016

1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số  chia hết cho 5 ?

2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?

3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?

4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

30 tháng 10 2018

a) nếu n là số lẻ

n+3 sẽ bằng 1 số lẻ => (n+3).(n+6) chia hết cho 2

nếu n là số chẵn

n+6 sẽ bằng 1 số chẵn=>(n+3).(n+6) chia hết cho 2

30 tháng 10 2018

a) ( n + 3 ) . ( n + 6 )

+) Xét n chẵn => n + 6 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2

+) Xét n lẻ => n + 3 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2 

+) Xét n bằng 0 => n + 6 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2

Vậy với mọi n thì ( n + 3 ) . ( n + 6 ) luôn chia hết cho 2

b) n . ( n + 5 )

+) Xét n chẵn => n chia hết cho 2 => n ( n + 5 ) chia hết cho 2

+) Xét n lẻ => n + 5 là số chẵn => n ( n + 5 ) chia hết cho 2 

+) Xét n bằng 0 => n ( n + 5 ) = 0 => n ( n + 5 ) chia hết cho 2

Vậy với mọi n thì n ( n + 5 ) luôn chia hết cho 2

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

8 tháng 10 2017

Bài 45 :

a ) Theo bài ra ta có :

a = 9.k + 6

a = 3.3.k + 3.2

\(\Rightarrow a⋮3\)

b ) Theo bài ra ta có :

a = 12.k + 9 

a = 3.4.k + 3.3

\(\Rightarrow a⋮3\)

Vì : \(a⋮3\Rightarrow a⋮6\)

c ) Ta thấy :

30 x 31 x 32 x ...... x 40 + 111

= 37 x 30 x ....... x 40 + 37 x 3

\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)

Bài 46 :

a ) số thứ nhất là n số thứ 2 là n+1 
tích của chúng là 
n(n+1) 
nếu n = 2k ( tức n là số chẵn) 
tích của chúng là 
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là 
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn 

Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2

b ) Nếu n là số lẻ thì : n + 3 là số chẵn 

Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2

Nếu n là số chẵn thì :

n . ( n + 3 ) luôn chi hết cho 2 

c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6 

Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7

Vì 1 ; 3 ; 7 không chia hết cho 2 

Vậy n2 + n + 1 không chia hết cho 2