K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề; SA=SB=SC=SD=2a

SA=SB

OA=OB

=>SO là trung trực của AB

=>SO vuông góc AB(2)

SA=SD

OA=OD

=>SO là trung trực của AD
=>SO vuông góc AD(1)

Từ (1), (2) suy ra SO vuông góc (ABCD)

(SC;(ABCD))=(CS;CO)=góc SCO

\(OC=\dfrac{a\sqrt{2}}{2}\)

\(SO=\sqrt{SA^2+AO^2}\)

\(=\sqrt{\left(2a\right)^2+\left(\dfrac{a\sqrt{2}}{2}\right)^2}=\sqrt{4a^2+\dfrac{1}{2}a^2}=\dfrac{3}{\sqrt{2}}a\)

\(SC=\sqrt{SO^2+OC^2}=\sqrt{\dfrac{9}{2}a^2+\dfrac{1}{2}a^2}=a\sqrt{5}\)

\(cosSCO=\dfrac{OC}{SC}\)

\(=\dfrac{a\sqrt{2}}{2}:a\sqrt{5}=\dfrac{\sqrt{2}}{2\sqrt{5}}\)

=>\(\widehat{SCO}\simeq72^0\)

=>\(\left(SC;\left(ABCD\right)\right)=72^0\)

 

16 tháng 8 2017

Đáp án D.

Trong mp   A B C D gọi O là giao điểm của AC và BD.

Trong mặt phẳng S A C , qua O kẻ đường thẳng vuông góc với SC, cắt SC tại H.

Ta có   B D ⊥ A C B D ⊥ S A ⇒ B D ⊥ S A C ⇒ B D ⊥ O H ⇒ O H là đường vuông góc chung của hai đường thẳng SC và BD.

Lại có A C = a 2 ⇒ C S = S A 2 + A C 2 = a 2 + 2 a 2 = 3 a 2 = a 3 .

Hai tam giác COH và CSA đồng dạng với nhau. Suy ra 

O H S A = C O C S ⇒ O H = S A . C O C S = a . a 2 2 a 3 = a 6 6

Vậy khoảng cách giữa hai đường thẳng SC và BD bằng a 6 6 .

Chọn đáp án D.

7 tháng 6 2017

Đáp án D

a: CD vuông góc AD; CD vuông góc SA

=>CD vuông góc (SAD)

b: BD vuông góc AC; BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

SO vuông góc (ABCD)

=>(SBD) vuông góc (ABCD)

b: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

d: (SB;(ABCD))=(BS;BO)=góc SBO

cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2

=>góc SBO=60 độ

2 tháng 2 2018

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

NV
9 tháng 4 2022

Đề bài thiếu dữ liệu liên quan vị trí đỉnh S. Ví dụ SA có vuông góc đáy hay không?