Cho tam giác ABC cân tại A. Gọi M là điểm bất kì thuộc cạnh đáy BC. Từ M kẻ ME // AB ( \(E\in AC\)) và MD//AC (\(D\in AB\))
a) C/m ADEM là hình bình hành
b) C/m tam giác MEC cân và MD+ME=AC
Giúp mik với!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((
b: Xét ΔMEC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔMEC cân tại E
Bn tự vẽ hình nha bn
a, Xét tứ giác ADME có
góc MDA= 90 độ ( MD ⊥ AB-gt)
góc MEA=90 độ ( ME ⊥ AC-gt)
góc BAC = 90 độ ( tam giác ABC vuông tại A -gt)
-> AEMD là hình chữ nhật ( dhnb )
-> ME= AD; ME song song AD
DM song song AE
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
b: Ta có: \(\widehat{EMC}=\widehat{B}\)
\(\widehat{C}=\widehat{B}\)
Do đó: \(\widehat{EMC}=\widehat{C}\)
hay ΔMEC cân tại E