chứng minh rằng 3 số tự nhiên và 3 số nguyên liên tiếp chia hết cho 6
chứng minh rằng 5 số tự nhiên và 5 số nguyên liên tiếp chia hết cho 120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z)
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3.
Một số chia cho 3 thì có 3 trường hợp:
- a chia hết cho 3
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)
Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)
Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6
Gọi 3 STN liên tiếp là a; a+1 ; a+2
Ta có: a+a+1+a+2 = a + a + a + (1 + 2) = 3a + 3
Vì 3a chia hết cho 3 và 3 chia hết cho 3 => 3a + 3 chia hết cho 3
Hay tổng 3 STN liên tiếp chia hết cho 3.
Phần cnf lại bn tự giải nha!
a) Gọi 3 số đó lần lượt là:a; a+1 ; a+2
Ta có: a + a+1 + a+2= 3a+3
3 chia hết cho 3 =>> 3a chia hết cho 3
=>> 3a+3 chia hết cho 3
=>> Tổng của 3 số tự nhiên liền tiếp luôn chia hết cho 3
Câu còn lại tương tự nha!
a) Goi 3 so tu nhien lien tiep la a;a+1;a+2
co : a+(a+1)+(a+2)=a+a+1+a+2=(a+a+a)+1+2=3a+3 ma 3a chia het cho 3 ; 3 chia het cho 3 nen suy ra Tong 3 so tu nhien lien tiep a;a+1;a+2 chia het cho 3
b) Tuong tu ta cung co 5 so : a;a+1;a+2;a+3;a+4
co : a+(a+1)+(a+2)+(a+3)+(a+4)=(a+a+a+a+a)+1+2+3+4=5a+10 ma 5a chia het cho 5;10 chia het cho 5 nen suy ra tong 5 so tu nhien lien tiep a;a+1;a+2;a+3;a+4 chia het cho 5
a)Ta gọi a;a+1;a+2 lần lượt là ba số tự nhiên liên tiếp.Tổng của chúng là:
a+(a+1)+(a+2)=a+a+1+a+2
=3xa+3
=3(a+1) chia hết cho 3
còn lại tương tự
Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?