Cho các số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) với mẫu dương , trong đó \(\dfrac{a}{b}< \dfrac{c}{d}\) Chứng minh rằng :
a) ad < bc
b) \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
b) Tham khảo:https://olm.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+h%E1%BB%AFu+t%E1%BB%89+a/b+v%C3%A0+c/d+v%E1%BB%9Bi+m%E1%BA%ABu+d%C6%B0%C6%A1ng+,+trong+%C4%91%C3%B3+a/b+%3Cc/d+.+c/m+r%E1%BA%B1ng+a)+a.d+%3Cb.c+b)+a/b+%3C+(a+c)/(b+d)%3Cc/d+&id=174343
a) Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{c}{d}\\b,d>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{b}.bd< \dfrac{c}{d}.bd\Rightarrow ad< bc\)
b) Ta có: \(ad< bc\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)(do \(b,d>0\))
\(bc>ad\Rightarrow bc+cd>ad+cd\)
\(\Rightarrow c\left(b+d\right)>d\left(a+c\right)\Rightarrow\dfrac{c}{d}>\dfrac{a+c}{b+d}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
`a/b<(a+c)/(b+d)`
`<=>a(b+d)<b(a+c)`
`<=>ab+ad<ad<bc`
`<=>ad<bc`
`<=>a/b<c/d`(theo giả thiết)
`(a+c)/(b+d)<c/d`
`<=>d(a+c)<c(b+d)`
`<=>ad+cd<bc+dc`
`<=>ad<bc`
`<=>a/b<c/d`(theo giả thiết)`
`=>a/b<(a+c)/(b+d)<c/d`
a) \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\Leftrightarrow\dfrac{ad-bc}{bd}< 0\)\(\Leftrightarrow ad-bc< 0\) ( do bc>0) \(\Leftrightarrow ad< bc\) (đpcm)
b) \(ad< bc\) \(\Leftrightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\) \(\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)(đpcm)
`a)a/b<c/d`
Nhân 2 vế cho `bd>0` ta có:
`(abd)/b<(bcd)/d`
`<=>ad<bc`
`b)ad<bc`
Chia 2 vế cho `bd>0` ta có:
`(ad)/(bd)<(bc)/(bd)`
`<=>a/b<c/d`.
1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)
a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc
b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )
Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )
Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )
Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\) ( đpcm. )
b) Vì \(b>0;d>0\) \(\Rightarrow b+d>0\)
Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Leftrightarrow ad< bc\) (*)
Thêm \(ab\) vào \(2\) vế (*), ta có:
\(ab+ad< ba+bc\)
\(a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)
Thêm \(cd\) vào \(2\) vế (*), ta được:
\(ad+cd< cb+cd\)
\(\left(a+c\right).d< c.\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( đpcm )
a)ta có \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)\(\Rightarrow\)\(\dfrac{a\times d}{b\times d}\)=\(\dfrac{c\times b}{d\times b}\)\(\Rightarrow\)a\(\times\)d=c\(\times\)d\(\Rightarrow\)ad=bc
b)theo câu a ta có \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad=bc\)(1)
Thêm ab vào 2 vế của (1):ad+ab=bc+ab
a(b+d)<b(a+c)\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)(2)
Thêm cd vào 2 vế của (1):ad+cd<bc+cd
d(a+c)<c(b+d)\(\Rightarrow\)\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\)(3)
Từ(2)và(3)\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)