CMR:n(n+2).(n+7) chia hết cho 3 (nen)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
Câu hỏi của Nguyễn Thị Quỳnh - Toán lớp 7 - Học toán với OnlineMath
n.(n+2).(n+7)
=n.n.(2+7)
=2n.9
Vì \(9⋮3\Rightarrow2n.9⋮3\)
CHÚC BẠN HỌC TỐT !!!
Lời giải:
Xét \(n=3k\Rightarrow n(n+2)(n+7)=3k(n+2)(n+7)\vdots 3\)
Xét \(n=3k+1\Rightarrow n(n+2)(n+7)=n(3k+3)(n+7)=3n(k+1)(n+7)\vdots 3\)
Xét \(n=3k+2\Rightarrow n(n+2)(n+7)=n(n+2)(3k+9)=3n(n+2)(k+3)\vdots 3\)
Từ các TH trên ta suy ra \(n(n+2)(n+7)\vdots 3\) với mọi \(n\in\mathbb{N}\)
Vì n không chi hế cho 3 => n chia 3 dư 1 hoặc n chia 3 dư 2
=> n có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N )
+) Với n = 3k + 1 => n2 = ( 3k + 1 )2 = (3k + 1)(3k + 1) = 9k2 + 6k + 1 = 3( 3k2 + 2k ) + 1
Vì 3( 3k2 + 2k ) chia hết cho 3 => 3( 3k2 + 2k ) + 1 chia 3 dư 1 ( 1 )
+) Với n = 3k + 2 => n2 = (3k + 2)2 = (3k + 2)( 3k + 2) = 9k2 + 12k + 4 = 3( 3k2 + 4k + 1 ) + 1
Vì 3( 3k2 + 4k + 1 ) chia hết cho 3 => 3( 3k2 + 4k + 1 ) + 1 chia 3 dư 1 ( 2 )
Từ (1) ; ( 2 ) => n2 chia 3 dư 1 ( đpcm )
Các bạn giúp mình với mình cảm ơn rất nhiều