Tính hợp lí:
A=\(\dfrac{1}{2}-\left(\dfrac{-2}{5}\right)+\dfrac{1}{3}+\dfrac{5}{7}-\left(\dfrac{-1}{6}\right)+\left(\dfrac{-4}{35}\right)+\dfrac{1}{41}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\dfrac{2}{5}+\dfrac{1}{3}+\dfrac{5}{7}+\dfrac{1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\)
\(=\dfrac{3+2+1}{6}+\dfrac{14+25-4}{35}+\dfrac{1}{41}\)
\(=1+\dfrac{1}{41}+1=2+\dfrac{1}{41}=\dfrac{83}{41}\)
1: \(\dfrac{1}{2}+\dfrac{9}{10}+\dfrac{5}{6}-\dfrac{11}{14}-\dfrac{1}{3}+\dfrac{-4}{35}\)
\(=\left(\dfrac{1}{2}+\dfrac{5}{6}-\dfrac{1}{3}\right)+\dfrac{9}{10}-\left(\dfrac{11}{14}+\dfrac{4}{35}\right)\)
\(=\dfrac{3+5-2}{6}+\dfrac{9}{10}-\dfrac{55+8}{70}\)
\(=1+\dfrac{9}{10}-\dfrac{9}{10}\)
=1
a: \(A=\dfrac{7}{12}+\dfrac{5}{72}-\dfrac{11}{36}=\dfrac{42}{72}+\dfrac{5}{72}-\dfrac{22}{72}=\dfrac{25}{72}\)
b: \(B=\dfrac{8+5}{10}:\dfrac{-5}{13}=\dfrac{13}{10}\cdot\dfrac{13}{-5}=-\dfrac{169}{100}\)
c: \(C=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}+\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{88-33+60}{55+132-84}=\dfrac{115}{103}\)
A=\(\dfrac{1}{2}\)-\(\left(\dfrac{-2}{5}\right)\)+\(\dfrac{1}{3}\)+\(\dfrac{5}{7}\)-\(\left(\dfrac{-1}{6}\right)\)+\(\left(\dfrac{-4}{35}\right)\)+\(\dfrac{1}{41}\)
=\(\dfrac{1}{2}\)+\(\dfrac{2}{5}\)+\(\dfrac{1}{3}\)+\(\dfrac{5}{7}\)+\(\dfrac{1}{6}\)-\(\dfrac{4}{35}\)+\(\dfrac{1}{41}\)
=\(\left[\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right]\)+\(\left[\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right]\)+\(\dfrac{1}{41}\)
= 1 + 1 +\(\dfrac{1}{41}\)
= \(\dfrac{83}{41}\)