Chứng minh rằng : 3x + y chia hết cho 31 thì 16x + 26 y chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai. Bạn cho $x=3; y=4$ thì $6x+11y=62$ chia hết cho $31$ nhưng $x+11y=47$ không chia hết cho $31$
6x+11y \(⋮\)cho 31=>6(6x+11y) chia hết cho 31=>36x+66y chia hết cho 31=>31x+31y+5x+35y chia hết cho 31Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31
x+7y chia hết cho 31=>6(x+7y) chia hết cho 31=>6x+42y chia hết cho 31=>6x+11y+31y chia hết cho 31Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
6x+11y chia hết cho 31
=>6(6x+11y) chia hết cho 31
=>36x+66y chia hết cho 31
=>31x+31y+5x+35y chia hết cho 31
Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31
Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31
x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
Ta xét : P= \(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)
Mặt khác: \(6x+11y⋮31\)
=> \(6\left(x+7y\right)⋮31\)(1)
Mà \(ƯCLN_{\left(6;31\right)}=1\)(2)
Từ (1)(2)=> x+7y chia hết cho 11(đpcm)
vì 6x + 11y \(⋮\)31
\(\Rightarrow\)6x + 11y + 31y \(⋮\)31
\(\Rightarrow\)6x + 42y \(⋮\)31
\(\Rightarrow\)6x + 7y \(⋮\)31 mà ( 6 ; 31 ) = 1
\(\Rightarrow\)x + 7y \(⋮\)31
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y
6x + 11y chia hết cho 31; 31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31
làm ngược lại
Bạn sai đề rồi phải là 16x+26y chia hết cho 31 chứ:
3x+y chia hết cho 31
=> 27.(3x+y) chia hết cho 31
=> 27.3x+27y chia hết cho 31
=> 81x+27y chia hết cho 31
=> (62+3+16).x+(1+26).y chia hết cho 31
=> 62x+3x+16x+y+26y chia hết cho 31
=> 62x+(3x+y)+(16x+26y) chia hết cho 31
Ta thấy tổng trên chia hết cho 31, mà 62x chia hết cho 31 và 3x+y chia hết cho 31 nên 16x+26y chia hết cho 31.