Bài 1: Tìm x thuộc Z:
\(a,\dfrac{111}{37}< x< \dfrac{91}{13}\) \(b,\dfrac{-84}{14}< 3x< \dfrac{108}{9}\)
Bài 2: Cho A = \(\dfrac{3n-5}{n+4}\). Tìm n thuộc Z để A có giá trị nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{111}{37}=3< x< \dfrac{91}{13}=7\)
Vậy x = {4;5;6}
b)
\(-\dfrac{84}{14}=-6< 3x< \dfrac{108}{9}=12\Leftrightarrow-2< x< 4\)
Vậy x = {-1;0;1;2;3}
a, Ta có : \(\dfrac{111}{37}< x< \dfrac{91}{13}\)
\(\Rightarrow3< x< 7\)
Mà x là số nguyên .
\(\Rightarrow x\in\left\{4;5;6\right\}\)
b, Ta có : \(-\dfrac{84}{14.3}< x< \dfrac{108}{9.3}\)
\(\Rightarrow-2< x< 4\)
Mà x là số nguyên .
\(\Rightarrow x\in\left\{-1;0;1;2;3\right\}\)
a)
ĐKXĐ: \(x\ne-4\)
Để A nguyên thì \(3x+21⋮x+4\)
\(\Leftrightarrow3x+12+9⋮x+4\)
mà \(3x+12⋮x+4\)
nên \(9⋮x+4\)
\(\Leftrightarrow x+4\inƯ\left(9\right)\)
\(\Leftrightarrow x+4\in\left\{1;-1;3;-3;9;-9\right\}\)
\(\Leftrightarrow x\in\left\{-3;-5;-1;-7;5;-13\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{-3;-5;-1;-7;5;-13\right\}\)
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để B nguyên thì \(2x^3-7x^2+7x+5⋮2x-1\)
\(\Leftrightarrow2x^3-x^2-6x^2+3x+4x-2+7⋮2x-1\)
\(\Leftrightarrow x^2\left(2x-1\right)-3x\left(2x-1\right)+2\left(2x-1\right)+7⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-3x+2\right)+7⋮2x-1\)
mà \(\left(2x-1\right)\left(x^2-3x+2\right)⋮2x-1\)
nên \(7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)(nhận)
Vậy: \(x\in\left\{1;0;4;-3\right\}\)
4,
a,\(\dfrac{x-1}{9}\)=\(\dfrac{8}{3}\)
[x- 1].3=9.8
[x- 1].3=72
x-1=72:3
x-1=24
x=24+1
x=25
a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)
\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)
\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)
b: 2x^2+7x+3=0
=>(2x+3)(x+2)=0
=>x=-3/2(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)
d: |B|<1
=>B>-1 và B<1
=>B+1>0 và B-1<0
=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a/ Để A ∈ Z
⇒ \(3x^2-9x+2\) ⋮ \(x-3\)
⇒ \(3x\left(x-3\right)+2\) ⋮ \(x-3\)
Vì \(3x\left(x-3\right)\) ⋮ \(x-3\)
⇒ \(2\) ⋮ \(x-3\)
⇒ \(x-3\inƯ_{\left(2\right)}\)
⇒ \(x-3\in\left\{1;2;-1;-2\right\}\)
⇒ \(x\in\left\{4;5;2;1\right\}\)
Vậy ...
b.
Ta có:
\(A=\dfrac{3n+9}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)
Để A thuộc Z
=> \(\dfrac{21}{n-4}\in Z\) ( n khác 4)
=> \(21⋮\left(n-4\right)\)
\(\Rightarrow n-4\inƯ\left(21\right)=\left\{21;-21;7;-7;3;-3\right\}\)
\(\Rightarrow n\in\left\{25;-17;11;-3;-1;1\right\}\) ( nhận)
a) \(B=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\left(đk:x\ge0,x\ne4\right)\)
\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}\)
c) \(C=A\left(B-2\right)=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}-2\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\dfrac{-2}{\sqrt{x}+2}=\dfrac{-2}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0\right\}\)
\(\Rightarrow x\in\left\{0;1;9;16\right\}\)
bài 2:để Z là số nguyên thì 3n-5 \(⋮\)n+4
\(\Rightarrow[(3n-5)-3(n+4)]⋮(n+4)\)
\(\Rightarrow(3n-5-3n-12)⋮(n+4)\)
\(\Rightarrow-17⋮n+4\)
\(\Rightarrow n+4\inƯ(17)\)={1;-1;17;-17}
\(\Rightarrow\)n\(\in\){-3;-5;13;-21}
tick cho mk nha bn